(Ⅰ) g(x)=lim
y→+∞
f(x,y)=lim
y→∞
(y
1+xy
?1?ysinπx
y
arctanx
)=lim
(1
1
+x
?1?sinπx
)=1
x
?1?πx
.
(Ⅱ) lim
x→0+
g(x)=lim
)=lim
arctanx?x+πx2
xarctanx
(通分)=lim
x2
=lim
1+x2
?1+2πx
2x
=lim
?x2+2πx(1+x2)
=π.
(Ⅰ) g(x)=lim
y→+∞
f(x,y)=lim
y→∞
(y
1+xy
?1?ysinπx
y
arctanx
)=lim
y→∞
(1
1
y
+x
?1?sinπx
y
1
y
arctanx
)=1
x
?1?πx
arctanx
.
(Ⅱ) lim
x→0+
g(x)=lim
x→0+
(1
x
?1?πx
arctanx
)=lim
x→0+
arctanx?x+πx2
xarctanx
(通分)=lim
x→0+
arctanx?x+πx2
x2
=lim
x→0+
1
1+x2
?1+2πx
2x
=lim
x→0+
?x2+2πx(1+x2)
2x
=π.