回覆列表
  • 1 # 使用者2458114238191884

    雜化軌道的判斷方式如下:

    1、判斷中心原子的孤電子對的數量

    2.找出與中心原子相連的原子數(即形成的σ鍵的數量)

    3.若二者相加等於2,那麼中心原子採用SP雜化;若等於3,那麼中心原子採用SP2雜化;若等於4,那麼中心原子採用SP3雜化。

    如乙烯,碳原子為中心原子,與其連線的原子數為3,同時碳的4個價電子均成鍵(3個σ鍵加1個π鍵),故孤對電子對數為零,所以0+3=3,採取SP2雜化;如氧化氫,氧原子為中心原子,與氧原子相連的原子數為2,同時氧剩餘兩對孤對電子,所以2+2=4,採用sp3雜化。

    雜化型別

    (1)sp雜化

    同一原子內由一個ns軌道和一個np軌道發生的雜化,稱為sp雜化。雜化後組成的軌道稱為sp雜化軌道。sp雜化可以而且只能得到兩個sp雜化軌道。實驗測知,氣態BeCl2中的鈹原子就是發生sp雜化,它是一個直線型的共價分子。Be原子位於兩個Cl原子的中間,鍵角180°,兩個Be-Cl鍵的鍵長和鍵能都相等。

    (2)sp2雜化

    同一原子內由一個ns軌道和二個np軌道發生的雜化,稱為sp2雜化。雜化後組成的軌道稱為sp2雜化軌道。氣態氟化硼(BF3)中的硼原子就是sp2雜化,具有平面三角形的結構。B原子位於三角形的中心,三個B-F鍵是等同的,鍵角為120°。

    (3)sp3雜化

    同一原子內由一個ns軌道和三個np軌道發生的雜化,稱為sp3雜化,雜化後組成的軌道稱為sp3雜化軌道。sp3雜化可以而且只能得到四個sp3雜化軌道。CH4分子中的碳原子就是發生sp3雜化,它的結構經實驗測知為正四面體結構,四個C-H鍵均等同,鍵角為109°28′。這樣的實驗結果,是電子配對法所難以解釋的,但雜化軌道理論認為,激發態C原子(2s12p3)的2s軌道與三個2p軌道可以發生sp3雜化,從而形成四個能量等同的sp3雜化軌道。

    (4)sp3d雜化

    等性雜化為三角雙錐結構,如PCl5

    (5)sp3d2雜化

    等性雜化為正八面體結構,如SF6

    說明:以上只是常見的雜化軌道型別,在配位化合物中還有更多的雜化型別。

    "頭碰頭"的方式重疊成σ鍵,"肩並肩"的方式重疊為π鍵

    例如在乙烯(CH2=CH2)分子中有碳碳雙鍵(C=C),碳原子的激發態中2px,2py和2s形成sp2雜化軌道,這3個軌道能量相等,位於同一平面並互成120℃夾角,另外一個pz軌道未參與雜化,位於與平面垂直的方向上。碳碳雙鍵中的sp2雜化如下所示。

    乙炔分子(C2H2)中有碳碳叄鍵(HC≡CH),激發態的C原子中2s和2px軌道形成sp雜化軌道。這兩個能量相等的sp雜化軌道在同一直線上,其中之一與H原子形成σ單鍵,另外一個sp雜化軌道形成C原子之間的σ鍵,而未參與雜化的py與pz則垂直於x軸並互相垂直,它們以肩並肩的方式與另一個C的py,pz形成π鍵。即碳碳三鍵是由一個σ鍵和兩個π鍵組成。這兩個π鍵不同於σ鍵,軌道重疊也較少並不穩定,因而容易斷開,所以含三鍵的炔烴也容易發生加成反應。

    雜化軌道限於最外層電子,而在第一層的兩個電子不參與反應,而在其他層上有許多的軌道,電子會從能量低的層"躍遷"到能量高的層,而原來能量低的層是因為電子的運動方向相反,而躍遷以後電子就只向一種方向運動,所以能量會高。並且反應以後組成的能量介於原來的S軌道和P軌道能量之間。

    幾種雜化軌道之後的分子空間形態

    sp雜化:直線型

    sp2雜化:平面三角形(等性雜化為平面正三角形)

    sp3雜化:空間四面體(等性雜化為正四面體)

  • 中秋節和大豐收的關聯?
  • 杜字結尾的成語?