拋物線:y = ax* + bx + c
就是y等於ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x-h)* + k
就是y等於a乘以(x-h)的平方+k
h是頂點座標的x
k是頂點座標的y
一般用於求最大值與最小值
拋物線標準方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點座標為(p/2,0) 準線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心座標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.
(二)橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積.
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是透過橢圓周率T推導演變而來.常數為體,公式為用.
橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高
三角函式:
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2
拋物線:y = ax* + bx + c
就是y等於ax 的平方加上 bx再加上 c
a > 0時開口向上
a < 0時開口向下
c = 0時拋物線經過原點
b = 0時拋物線對稱軸為y軸
還有頂點式y = a(x-h)* + k
就是y等於a乘以(x-h)的平方+k
h是頂點座標的x
k是頂點座標的y
一般用於求最大值與最小值
拋物線標準方程:y^2=2px
它表示拋物線的焦點在x的正半軸上,焦點座標為(p/2,0) 準線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圓:體積=4/3(pi)(r^3)
面積=(pi)(r^2)
周長=2(pi)r
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心座標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)橢圓周長計算公式
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差.
(二)橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積.
以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是透過橢圓周率T推導演變而來.常數為體,公式為用.
橢圓形物體 體積計算公式橢圓 的 長半徑*短半徑*PAI*高
三角函式:
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2