回覆列表
  • 1 # 使用者1788346970835

    特殊角三角函式:

    sin30 =1/2

    sin45=√2/2

    sin60=√3/2

    sin90 =1

    cos30=√3/2

    cos45=√2/2

    cos60=1/2

    cos 90=0

    tanθ=sinθ/cosθ

    α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

    α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

    α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

    α=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

    α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

    α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

    α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

    α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

    α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

    α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

    α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

    α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

    三角函式是數學中常見的一類關於角度的函式。也可以說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。在數學分析中,三角函式也被定義為無窮級限或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是複數值。

    常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。

    三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲餘弦函式等等。三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。

    特殊三角函式值一般指在0,30,45,60,90,180度角下的正餘弦值。這些角度的三角函式值是經常用到的。並且利用兩角和與差的三角函式公式,可以求出一些其他角度的三角函式值。

  • 中秋節和大豐收的關聯?
  • 智永真書千字文哪個出版社出版的最為正宗?