首頁>Club>
19
回覆列表
  • 1 # 大寶8211

    sinx+sin2x+sin3x+...+sin(nx)

    =1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))。

    解:因為cos(A-B)-cos(A+B)=2sinAsinB,

    那麼2sinx*sin(x/2)=cos(x-x/2)-cos(x+x/2)=cos(x/2)-cos(3x/2)

    2sin(2x)*sin(x/2)=cos(2x-x/2)-cos(2x+x/2)=cos(3x/2)-cos(5x/2)

    2sin(3x)*sin(x/2)=cos(3x-x/2)-cos(3x+x/2)=cos(5x/2)-cos(7x/2)

    ......

    2sin(nx)*sin(x/2)=cos(nx-x/2)-cos(nx+x/2)=cos((2n-1)x/2)-cos((2n+1)x/2)

    等式兩邊全部相加得,

    2sinx*sin(x/2)+2sin(2x)*sin(x/2)+2sin(3x)*sin(x/2)+...+2sin(nx)*sin(x/2)

    =cos(x/2)-cos(3x/2)+cos(3x/2)-cos(5x/2)+cos(5x/2)-cos(7x/2)+...+cos((2n-1)x/2)-cos((2n+1)x/2)

    化簡可得,

    2sin(x/2)*(sinx+sin2x+sin3x+...+sinnx)=cos(x/2)-cos((2n+1)x/2)

    那麼,

    sinx+sin2x+sin3x+...+sinnx=(cos(x/2)-cos((2n+1)x/2))/(2sin(x/2))

    =1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))

  • 中秋節和大豐收的關聯?
  • 我家裡栽培的黃瓜為什麼乾枯不長?