sinx+sin2x+sin3x+...+sin(nx)
=1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))。
解:因為cos(A-B)-cos(A+B)=2sinAsinB,
那麼2sinx*sin(x/2)=cos(x-x/2)-cos(x+x/2)=cos(x/2)-cos(3x/2)
2sin(2x)*sin(x/2)=cos(2x-x/2)-cos(2x+x/2)=cos(3x/2)-cos(5x/2)
2sin(3x)*sin(x/2)=cos(3x-x/2)-cos(3x+x/2)=cos(5x/2)-cos(7x/2)
......
2sin(nx)*sin(x/2)=cos(nx-x/2)-cos(nx+x/2)=cos((2n-1)x/2)-cos((2n+1)x/2)
等式兩邊全部相加得,
2sinx*sin(x/2)+2sin(2x)*sin(x/2)+2sin(3x)*sin(x/2)+...+2sin(nx)*sin(x/2)
=cos(x/2)-cos(3x/2)+cos(3x/2)-cos(5x/2)+cos(5x/2)-cos(7x/2)+...+cos((2n-1)x/2)-cos((2n+1)x/2)
化簡可得,
2sin(x/2)*(sinx+sin2x+sin3x+...+sinnx)=cos(x/2)-cos((2n+1)x/2)
那麼,
sinx+sin2x+sin3x+...+sinnx=(cos(x/2)-cos((2n+1)x/2))/(2sin(x/2))
=1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))
sinx+sin2x+sin3x+...+sin(nx)
=1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))。
解:因為cos(A-B)-cos(A+B)=2sinAsinB,
那麼2sinx*sin(x/2)=cos(x-x/2)-cos(x+x/2)=cos(x/2)-cos(3x/2)
2sin(2x)*sin(x/2)=cos(2x-x/2)-cos(2x+x/2)=cos(3x/2)-cos(5x/2)
2sin(3x)*sin(x/2)=cos(3x-x/2)-cos(3x+x/2)=cos(5x/2)-cos(7x/2)
......
2sin(nx)*sin(x/2)=cos(nx-x/2)-cos(nx+x/2)=cos((2n-1)x/2)-cos((2n+1)x/2)
等式兩邊全部相加得,
2sinx*sin(x/2)+2sin(2x)*sin(x/2)+2sin(3x)*sin(x/2)+...+2sin(nx)*sin(x/2)
=cos(x/2)-cos(3x/2)+cos(3x/2)-cos(5x/2)+cos(5x/2)-cos(7x/2)+...+cos((2n-1)x/2)-cos((2n+1)x/2)
化簡可得,
2sin(x/2)*(sinx+sin2x+sin3x+...+sinnx)=cos(x/2)-cos((2n+1)x/2)
那麼,
sinx+sin2x+sin3x+...+sinnx=(cos(x/2)-cos((2n+1)x/2))/(2sin(x/2))
=1/2*(cot(x/2)-cot(x/2)*cos(nx)+sin(nx))