回覆列表
  • 1 # 使用者8451710051916

    原子軌道(英語:atomic orbital),又稱軌態,是以數學函式描述原子中電子似波行為[1][2]。此波函式可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置[1][3]。“軌道”便是指在波函式界定下,電子在原子核外空間出現機率較大的區域。具體而言,原子軌道是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌道波函式描述。

    電子的原子與分子軌道,依照能階排序

    現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)執行。然而,電子不能被視為形狀固定的固體粒子,原子軌道也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的“大氣”(電子),分佈於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌道才能精準符合“大氣”的形狀。當原子中有越來越多電子時,電子越傾向均勻分佈在原子核四周的空間體積中,因此“電子雲”[4]越傾向分佈在特定球形區域內(區域內電子出現機率較高)。

    早在1904年,日本物理學家長岡半太郎首度發表電子以類似環繞軌道的方式在原子內運轉的想法[5]。1913年,丹麥物理學家尼爾斯·波耳提出理論,主張電子以固定的角動量環繞著體積極小的原子核執行[6]。然而,一直到1926年、量子力學發展後,薛定諤方程式才解釋了原子中的電子波動,定下關於新概念“軌道”的函式[1][7]。

    由於這個新概念不同於古典物理學中的軌道想法,1932年美國化學家羅伯特·馬利肯提出以“軌道”(orbital)取代“軌道”(orbit)一詞[8]。原子軌道是單一原子的波函式,使用時必須代入n(主量子數)、l(角量子數)、m(磁量子數)三個量子化引數,分別決定電子的能量、角動量和方位,三者統稱為量子數[1]。每個軌道都有一組不同的量子數,且最多可容納兩個電子。s軌道、p軌道、d軌道、f軌道則分別代表角量子數l=0, 1, 2, 3的軌道,表現出如右圖的軌道形狀及電子排布。它的名稱源於對其原子光譜特徵譜線外觀的描述,分為銳系光譜(sharp)、主系光譜(principal)、漫系光譜(diffuse)、基系光譜(fundamental),其餘則依字母序命名(跳過 j)[9][10]。

    在原子物理學的運算中,複雜的電子函式常被簡化成較容易的原子軌道函式組合。雖然多電子原子的電子並不能以“一或二個電子之原子軌道”的理想影象解釋,它的波函式仍可以分解成原子軌道函式組合,以原子軌道理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌道“構成”,每個原子軌道內只含一或二個電子。[1]

    能級交錯

    同一電子層之間有電子的相互作用,不同電子層之間也有相互作用,這種相互作用稱為“鑽穿效應”。其原理較為複雜,鑽穿效應的直接結果就是上一電子層的d能級的能量高於下一電子層s的能量。即,d層和s層發生交錯,f層與d層和s層都會發生交錯。

    中國化學家徐光憲提出了一條能級計算的經驗定律:能級的能量近似等於n+0.7l。

    美國著名化學家萊納斯·鮑林也透過計算給出了一份近似能級圖(見右圖)這幅圖近似描述了各個能級的能量大小,有著廣泛的應用[6] 。

    軌道

    在外部磁場存在的情況下,許多原子譜線還是發生了更細的分裂,這個現象被叫做塞曼效應(因電場而產生的裂分被稱為斯塔克效應),這種分裂在無磁場和電場時不存在,說明,電子在同一能級雖然能量相同,但運動方向不同,因而會受到方向不同的洛倫茲力的作用。這些電子運動描述軌道的量子數稱為磁量子數(magnetic quantum number)符號“m”,對於每一個確定的能級(電子亞層),m有一個確定的值,這個值與電子層無關(任何電子層內的能級的軌道數相同)。

    軌道的形狀可以根據薛定諤方程球座標的Y(θ,φ)推算,s能級為一個簡單的球形軌道。p能級軌道為啞鈴形,分別佔據空間直角座標系的x,y,z軸,即有三個不同方向的軌道。d的軌道較為複雜,f能級的七個軌道更為複雜。所有軌道的角度分佈波函式影象參見a gallery of atomic orbitals and molecular orbitals[7] 。

    電子在原子軌道的運動遵循三個基本定理:能量最低原理、泡利不相容原理、洪德定則。

  • 中秋節和大豐收的關聯?
  • 寫事的詩句有哪些?