由已知|ab-2|與|b-1|互為相反數,有:ab=2,b=1 那麼a=2
又有1/(n+1)(n+2)=1/(n+1)-1/(n+2)
那麼,
1/(1*2)+1/(2*3)+...+1/(1+n)(2+n)=1-1/2+1/2-1/3+...+1/(1+n)-1/(2+n)=1-1/(2+n)=(n+1)/(n+2)
將n=2007,n=1999代入得
1 1 1 1
—+ ---------- + ---------- + ......+ ---------------- =2008/2009
ab (a+1)(b+1) (a+2)(b+2) (a+2007)(b+2007)
—+ ---------- + ---------- + ......+ ---------------- =2000/2001
ab (a+1)(b+1) (a+2)(b+2) (a+1999)(b+1999)
由已知|ab-2|與|b-1|互為相反數,有:ab=2,b=1 那麼a=2
又有1/(n+1)(n+2)=1/(n+1)-1/(n+2)
那麼,
1/(1*2)+1/(2*3)+...+1/(1+n)(2+n)=1-1/2+1/2-1/3+...+1/(1+n)-1/(2+n)=1-1/(2+n)=(n+1)/(n+2)
將n=2007,n=1999代入得
1 1 1 1
—+ ---------- + ---------- + ......+ ---------------- =2008/2009
ab (a+1)(b+1) (a+2)(b+2) (a+2007)(b+2007)
1 1 1 1
—+ ---------- + ---------- + ......+ ---------------- =2000/2001
ab (a+1)(b+1) (a+2)(b+2) (a+1999)(b+1999)