sinA^2+sinB^2+sinC^2
由己知恆等式:
(cosA)^2+(cosB)^2+(cosC)^2+2*cosA*cosB*cosC=1
所以上式化簡等價於:
cosA*cosB*cosC
三角形A、B、C為鈍角三角形
附
(COSA*2+COSB*2+COSC*2)=1-2COSACOSBCOSC
cosC=cos[π-(A+B)]=cos(A+B)=cosAcosB-sinAsinB
左邊=cosA*2+cosB*2+cosA*2cosB*2+sinA*2sinB*2
-2cosAcosBsinAsinB
=cosA*2+cosB*2+cosA*2cosB*2+(1-cosA*2)(1-cosB*2)
=1-2[cosA*2cosB*2-cosAcosBsinAsinB]
=1-2cosAcosB(cosAcosB-sinAsinB)
=1-2cosAcosBcos(A+B)
=1-2cosAcosBcos[π-(A+B)]
=1-2cosAcosBcosC=右邊
sinA^2+sinB^2+sinC^2
由己知恆等式:
(cosA)^2+(cosB)^2+(cosC)^2+2*cosA*cosB*cosC=1
所以上式化簡等價於:
cosA*cosB*cosC
三角形A、B、C為鈍角三角形
附
(COSA*2+COSB*2+COSC*2)=1-2COSACOSBCOSC
cosC=cos[π-(A+B)]=cos(A+B)=cosAcosB-sinAsinB
左邊=cosA*2+cosB*2+cosA*2cosB*2+sinA*2sinB*2
-2cosAcosBsinAsinB
=cosA*2+cosB*2+cosA*2cosB*2+(1-cosA*2)(1-cosB*2)
-2cosAcosBsinAsinB
=1-2[cosA*2cosB*2-cosAcosBsinAsinB]
=1-2cosAcosB(cosAcosB-sinAsinB)
=1-2cosAcosBcos(A+B)
=1-2cosAcosBcos[π-(A+B)]
=1-2cosAcosBcosC=右邊