一個正數的相反數是負數;一個負數的相反數是正數。
瞭解相反數的時候要注意它的定義:相反數,指數值相反的兩個數,其中一個數是另一個數的相反數。定義是隻有符號不同的兩個數互為相反數。相反數的性質是他們的絕對值相同。例如:-2與+2互為相反數。用字母表示a與-a是相反數,0的相反數是0。這裡a便是任意一個數,可以是正數、負數,也可以是0。
只有清楚相反數的定義才能搞懂它的內涵
基本概念
相反數(opposite number)
1、相反數特性:若
a.b
2、零的相反數是0。
3、相反數是成對出現,不能單獨出現。
4、要把"相反數“與”相反意義的量“區分開來,"相反數”不但是數的符號相反,而且符號後面的數字必須相同,如同:+5與-5,而“具有相反意義的量”只要符號相反即可,如+3與-7。
5、求一個數的相反數只需這個數前面加上一個負號就可以了,若原數帶有符號(不論正負),則應先添括號。
6、數字a的相反數是-a,-a的相反數是a。這裡的a不一定是正數,所以-a也不一定就是負數。
例如: a=0 時,則-a=0, 即a= -a;
a﹤0時,則-a﹥0,即a﹤-a;
a﹥0時,則-a﹤0,即a﹥-a。
7、在化簡多重符號時應注意:一個正數的前面有偶數個“-”時,可以化簡為這個數字本身。
例如:-[-(7)]=7(按照有理數乘法法則,同號得正,異號得負。)
8、在化簡多重符號時應注意:一個正數前面有奇數個“-”號時,可以化簡成為這個數的相反數。
例如: -(7)=-7 -{-[-(7)]}=-7
代數意義
和是0的兩個數互為相反數,0的相反數還是0。
1、只有符號不同的兩個數稱互為相反數。a和-a是一對互為相反數,a叫做-a的相反數,-a叫做a的相反數。注意:-a不一定是負數。a不一定是正數。(a可以等於任何實數)
2、若兩個實數a和b滿足b=﹣a。我們就說b是a的相反數。
一個正數的相反數是負數;一個負數的相反數是正數。
瞭解相反數的時候要注意它的定義:相反數,指數值相反的兩個數,其中一個數是另一個數的相反數。定義是隻有符號不同的兩個數互為相反數。相反數的性質是他們的絕對值相同。例如:-2與+2互為相反數。用字母表示a與-a是相反數,0的相反數是0。這裡a便是任意一個數,可以是正數、負數,也可以是0。
只有清楚相反數的定義才能搞懂它的內涵
基本概念
相反數(opposite number)
1、相反數特性:若
a.b
互為相反數,則a+b=0,反之若a+b=0,則a、b互為相反數。2、零的相反數是0。
3、相反數是成對出現,不能單獨出現。
4、要把"相反數“與”相反意義的量“區分開來,"相反數”不但是數的符號相反,而且符號後面的數字必須相同,如同:+5與-5,而“具有相反意義的量”只要符號相反即可,如+3與-7。
5、求一個數的相反數只需這個數前面加上一個負號就可以了,若原數帶有符號(不論正負),則應先添括號。
6、數字a的相反數是-a,-a的相反數是a。這裡的a不一定是正數,所以-a也不一定就是負數。
例如: a=0 時,則-a=0, 即a= -a;
a﹤0時,則-a﹥0,即a﹤-a;
a﹥0時,則-a﹤0,即a﹥-a。
7、在化簡多重符號時應注意:一個正數的前面有偶數個“-”時,可以化簡為這個數字本身。
例如:-[-(7)]=7(按照有理數乘法法則,同號得正,異號得負。)
8、在化簡多重符號時應注意:一個正數前面有奇數個“-”號時,可以化簡成為這個數的相反數。
例如: -(7)=-7 -{-[-(7)]}=-7
代數意義
和是0的兩個數互為相反數,0的相反數還是0。
1、只有符號不同的兩個數稱互為相反數。a和-a是一對互為相反數,a叫做-a的相反數,-a叫做a的相反數。注意:-a不一定是負數。a不一定是正數。(a可以等於任何實數)
2、若兩個實數a和b滿足b=﹣a。我們就說b是a的相反數。