回覆列表
  • 1 # 塵埃裡的寂寞煙火

    f"(x)=(xcosx-sinx)/x^2,

    f"(0)=lim<x→0>(sinx/x-1)/x=lim<x→0>(sinx-x)/x^2

    =lim<x→0>(cosx-1)/(2x)=lim<x→0>-sinx/2=0.

    f""(x)=(cosx-xsinx-cosx)/x^2-2(xcosx-sinx)/x^3

    =(-x^2sinx-2xcosx+2sinx)/x^3,

    f""(0)=lim<x→0>[(xcosx-sinx)/x^2-0]/x

    =lim<x→0>(xcosx-sinx)/x^3

    =lim<x→0>(cosx-xsinx-cosx)/(3x^2)=-1/3.

    f"""(x)=(-2xsinx-x^2cosx-2cosx+2xsinx+2cosx)/x^3-3(-x^2sinx-2xcosx+2sinx)/x^4

    =(-x^3cosx+3x^2sinx+6xcosx-6sinx)/x^4,

    f"""(0)=lim<x→0>[(-x^2sinx-2xcosx+2sinx)/x^3+1/3]/x

    =lim<x→0>(-3x^2sinx-6xcosx+6sinx+x^3)/(3x^4)

    =lim<x→0>(-6xsinx-3x^2cosx-6cosx+6xsinx+6cosx+3x^2)/(8x^3)

    =lim<x→0>(-3cosx+3)/(8x)=0,

    f(4)(0)=lim<x→0>(-x^3cosx+3x^2sinx+6xcosx-6sinx)/x^5

    =lim<x→0>(-3x^2cosx+x^3sinx+6xsinx+3x^2cosx+6cosx-6xsinx-6cosx)/(5x^4)

    =lim<x→0>(sinx)/(5x)=1/5.

  • 中秋節和大豐收的關聯?
  • a story happened in my dorm急求,英語作文,謝謝?