答案是(1/3)ln(x-1)-(1/6)ln(x²+x+1)-(2/√3)arctan[(2x+1)/√3]+C
過程:
∫1/(x³-1)
dx
=∫1/(x-1)(x²+x+1)
=∫1/3(x-1)-(x+2)/3(x²+x+1)]
dx,總之在/後面的都是分母
=1/3*∫1/(x-1)
dx-1/3*∫(x+2)/(x²+x+1)
d(x-1)-1/3*∫[(2x+1)/2(x²+x+1)+3/2(x²+x+1)]
=1/3*ln(x-1)-1/6*∫(2x+1)/(x²+x+1)
dx-1/2*∫1/(x²+x+1)
=1/3*ln(x-1)-1/6*∫(2x+1)d(x²+x+1)/(x²+x+1)(2x+1)-1/2*∫1/[(x+1/2)²+3/4]
=1/3*ln(x-1)-1/6*ln(x²+x+1)-1/2*∫1/[(x+1/2)²+3/4]
d(x+1/2)
=1/3*ln(x-1)-1/6*ln(x²+x+1)-√(4/3)*arctan[√(4/3)*(x+1/2)]+C
=1/3*ln(x-1)-1/6*ln(x²+x+1)-2/√3*arctan[(2x+1)/√3)]+C
=(1/3)ln(x-1)-(1/6)ln(x²+x+1)-(2/√3)arctan[(2x+1)/√3]+C
答案是(1/3)ln(x-1)-(1/6)ln(x²+x+1)-(2/√3)arctan[(2x+1)/√3]+C
過程:
∫1/(x³-1)
dx
=∫1/(x-1)(x²+x+1)
dx
=∫1/3(x-1)-(x+2)/3(x²+x+1)]
dx,總之在/後面的都是分母
=1/3*∫1/(x-1)
dx-1/3*∫(x+2)/(x²+x+1)
dx
=1/3*∫1/(x-1)
d(x-1)-1/3*∫[(2x+1)/2(x²+x+1)+3/2(x²+x+1)]
dx
=1/3*ln(x-1)-1/6*∫(2x+1)/(x²+x+1)
dx-1/2*∫1/(x²+x+1)
dx
=1/3*ln(x-1)-1/6*∫(2x+1)d(x²+x+1)/(x²+x+1)(2x+1)-1/2*∫1/[(x+1/2)²+3/4]
dx
=1/3*ln(x-1)-1/6*ln(x²+x+1)-1/2*∫1/[(x+1/2)²+3/4]
d(x+1/2)
=1/3*ln(x-1)-1/6*ln(x²+x+1)-√(4/3)*arctan[√(4/3)*(x+1/2)]+C
=1/3*ln(x-1)-1/6*ln(x²+x+1)-2/√3*arctan[(2x+1)/√3)]+C
=(1/3)ln(x-1)-(1/6)ln(x²+x+1)-(2/√3)arctan[(2x+1)/√3]+C