高斯求和
德國著名數學家、物理學家
德國著名數學家、物理學家、天文學家、大地測量學家約翰·卡爾·弗里德里希·高斯 求和公式:和=(首項 + 末項)x項數 /2數學表達:1+2+3+4+……+ n = (n+1)n /2。
基本資訊
中文名
目錄
等差數列和
7歲那年,高斯第一次上學了。頭兩年沒有什麼特殊的事情。1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。數學教師是布特納(Buttner),他對高斯的成長也起了一定作用。在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納剛敘述完題目,高斯就算出了正確答案。不過,這很可能是一個不真實的傳說。據對高斯素有研究的著名數學史家E·T·貝爾(E.T.Bell)考證,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899。
當然,這也是一個等差數列的求和問題(公差為198,項數為100)。當布特納剛一寫完時,高斯也算完並把寫有答案的小石板交了上去。E·T·貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了。高斯沒有明確地講過,他是用什麼方法那麼快就解決了這個問題。數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。貝爾根據高斯本人晚年的說法而敘述的史實,應該是比較可信的。而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點。
公式
末項=首項+(項數-1)×公差
項數=(末項-首項)/公差+1
首項=末項-(項數-1)×公差
和=(首項+末項)×項數/2
高斯求和
德國著名數學家、物理學家
德國著名數學家、物理學家、天文學家、大地測量學家約翰·卡爾·弗里德里希·高斯 求和公式:和=(首項 + 末項)x項數 /2數學表達:1+2+3+4+……+ n = (n+1)n /2。
基本資訊
中文名
高斯求和
目錄
等差數列和
7歲那年,高斯第一次上學了。頭兩年沒有什麼特殊的事情。1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。數學教師是布特納(Buttner),他對高斯的成長也起了一定作用。在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納剛敘述完題目,高斯就算出了正確答案。不過,這很可能是一個不真實的傳說。據對高斯素有研究的著名數學史家E·T·貝爾(E.T.Bell)考證,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899。
當然,這也是一個等差數列的求和問題(公差為198,項數為100)。當布特納剛一寫完時,高斯也算完並把寫有答案的小石板交了上去。E·T·貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了。高斯沒有明確地講過,他是用什麼方法那麼快就解決了這個問題。數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。貝爾根據高斯本人晚年的說法而敘述的史實,應該是比較可信的。而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點。
公式
末項=首項+(項數-1)×公差
項數=(末項-首項)/公差+1
首項=末項-(項數-1)×公差
和=(首項+末項)×項數/2