i指的是虛數。在數學裡,將偶指數冪是負數的數定義為純虛數。所有的虛數都是複數。定義為i²=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。
在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i = - 1。虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
實數和虛陣列成的一對數在複數範圍內看成一個數,起名為複數,虛數沒有正負可言。不是實數的複數,即使是純虛數,也不能比較大小。
虛數就是其平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的。
擴充套件知識
複數是由義大利米蘭學者卡當在十六世紀首次引入,經過達朗貝爾、棣莫弗、尤拉、高斯等人的工作,此概念逐漸為數學家所接受。
複數的四則運算規定為:加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i
除法法則:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)]i
i指的是虛數。在數學裡,將偶指數冪是負數的數定義為純虛數。所有的虛數都是複數。定義為i²=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。
在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i = - 1。虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
實數和虛陣列成的一對數在複數範圍內看成一個數,起名為複數,虛數沒有正負可言。不是實數的複數,即使是純虛數,也不能比較大小。
虛數就是其平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的。
擴充套件知識
複數是由義大利米蘭學者卡當在十六世紀首次引入,經過達朗貝爾、棣莫弗、尤拉、高斯等人的工作,此概念逐漸為數學家所接受。
複數的四則運算規定為:加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i
除法法則:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)]i