粉煤灰對混凝土最直觀的影響是新拌混凝土工作效能的需水量比,和對硬化混凝土的力學強度(強度活性指數)。
需水量對於粉煤灰的很多工程應用是非常重要的物理指標,它是指粉煤灰和水的混合物達到某一流動度下所需要的水量,粉煤灰需水量越小工程利用價值就越大。有的學者[5]採用下列函式表示粉煤灰需水量比y與粉煤灰細度x1(45μm篩餘%)、密度x2、燒失量x3的關係。
y=104.3x10.05x2-0.261x30.0054(1.1)
thomas[6]根據比較多的實驗給出需水量比y與粉煤灰細度x1(45μm篩餘%)之間的關係如下式。
當燒失量3~4%時y=88.76+0.25x1(1.2)相關係數r=0.86
當燒失量5~11%時y=89.32+0.38x1(1.3)相關係數r=0.85
上述3個實驗歸納式說明細粉煤灰可以降低粉煤灰的需水量比,其中的機理可能是磨細粉煤灰粉碎空心顆粒,釋放內部的自由水分,另一方面也提高了粉煤灰的堆積密度所致。因此細磨粉煤灰是改善粉煤灰品質的一項技術措施。
從(1.1)式可以看出影響粉煤灰需水量比的另一因素是燒失量,燒失量越大粉煤灰的需水量比越大,對粉煤灰燒失量貢獻最大的物質主要是有機成分的未燃盡的殘碳和未變化或變化不明顯的煤粒。k.wesche[7]試驗粉煤灰摻量為20%,結果表明,隨燒失量增加粉煤灰水泥砂漿的相對流動擴充套件度迅速降低,當燒失量超過10%時,粉煤灰的相對擴充套件度比基準水泥砂漿還低。燒失量對粉煤灰需水量比的影響是由於未燃盡的殘碳的存在,主要以空心碳和網狀碳的形貌存在,其存在的狀態是單體形式、粘結在粉煤灰顆粒的表面、被包裹在粉煤灰顆粒中三種形式[8]。這些粗大多孔的碳顆粒不僅使粉煤灰的需水量比增大,而且對混凝土的引氣劑效果產生不利的影響,因為這些碳粒更容易吸附引氣劑。因此摻加高燒失量粉煤灰通常需要更大計量的引氣劑。此外高燒失量的粉煤灰因為含炭組分高的顆粒比較輕,在混凝土攪拌、運輸和成型過程中容易浮到表面造成混凝土的離析。
由上可見,影響粉煤灰需水量比的因素主要為細度、燒失量。
粉煤灰對混凝土最直觀的影響是新拌混凝土工作效能的需水量比,和對硬化混凝土的力學強度(強度活性指數)。
需水量對於粉煤灰的很多工程應用是非常重要的物理指標,它是指粉煤灰和水的混合物達到某一流動度下所需要的水量,粉煤灰需水量越小工程利用價值就越大。有的學者[5]採用下列函式表示粉煤灰需水量比y與粉煤灰細度x1(45μm篩餘%)、密度x2、燒失量x3的關係。
y=104.3x10.05x2-0.261x30.0054(1.1)
thomas[6]根據比較多的實驗給出需水量比y與粉煤灰細度x1(45μm篩餘%)之間的關係如下式。
當燒失量3~4%時y=88.76+0.25x1(1.2)相關係數r=0.86
當燒失量5~11%時y=89.32+0.38x1(1.3)相關係數r=0.85
上述3個實驗歸納式說明細粉煤灰可以降低粉煤灰的需水量比,其中的機理可能是磨細粉煤灰粉碎空心顆粒,釋放內部的自由水分,另一方面也提高了粉煤灰的堆積密度所致。因此細磨粉煤灰是改善粉煤灰品質的一項技術措施。
從(1.1)式可以看出影響粉煤灰需水量比的另一因素是燒失量,燒失量越大粉煤灰的需水量比越大,對粉煤灰燒失量貢獻最大的物質主要是有機成分的未燃盡的殘碳和未變化或變化不明顯的煤粒。k.wesche[7]試驗粉煤灰摻量為20%,結果表明,隨燒失量增加粉煤灰水泥砂漿的相對流動擴充套件度迅速降低,當燒失量超過10%時,粉煤灰的相對擴充套件度比基準水泥砂漿還低。燒失量對粉煤灰需水量比的影響是由於未燃盡的殘碳的存在,主要以空心碳和網狀碳的形貌存在,其存在的狀態是單體形式、粘結在粉煤灰顆粒的表面、被包裹在粉煤灰顆粒中三種形式[8]。這些粗大多孔的碳顆粒不僅使粉煤灰的需水量比增大,而且對混凝土的引氣劑效果產生不利的影響,因為這些碳粒更容易吸附引氣劑。因此摻加高燒失量粉煤灰通常需要更大計量的引氣劑。此外高燒失量的粉煤灰因為含炭組分高的顆粒比較輕,在混凝土攪拌、運輸和成型過程中容易浮到表面造成混凝土的離析。
由上可見,影響粉煤灰需水量比的因素主要為細度、燒失量。