1 36,2 36,3 36,4 36,6 36,9 36,12 36,18 36 6 9,18 12,4 9,12 9,18 4。
最小公倍數(Least Common Multiple)是一種數學概念,是指兩個或多個整數公有的倍數中,除0以外最小的一個公倍數。
最小公倍數的求解方法有分解質因數法與公式法兩種,與其相對應的概念是最大公約數。
幾個數共有的倍數叫做這幾個數的公倍數,其中除0以外最小的一個公倍數,叫做這幾個數的最小公倍數。
自然數a、b的最小公倍數可以記作[a,b],自然數a、b的最大公因數可以記作(a、b),當(a、b)=1時,[a、b]= a×b。如果兩個數是倍數關係,則它們的最小公倍數就是較大的數,相鄰的兩個自然數的最小公倍數是它們的乘積。最小公倍數=兩數的乘積/最大公約(因)數, 解題時要避免和最大公約(因)數問題混淆。
最小公倍數的適用範圍:分數的加減法,中國剩餘定理(正確的題在最小公倍數內有解,有唯一的解)。因為,素數是不能被1和自身數以外的其它數整除的數;素數X的N次方,是隻能被X的N及以下次方,1和自身數整除。所以,給最小公倍數下一個定義:S個數的最小公倍數,為這S個數中所含素因子的最高次方之間的乘積。
1 36,2 36,3 36,4 36,6 36,9 36,12 36,18 36 6 9,18 12,4 9,12 9,18 4。
最小公倍數(Least Common Multiple)是一種數學概念,是指兩個或多個整數公有的倍數中,除0以外最小的一個公倍數。
最小公倍數的求解方法有分解質因數法與公式法兩種,與其相對應的概念是最大公約數。
幾個數共有的倍數叫做這幾個數的公倍數,其中除0以外最小的一個公倍數,叫做這幾個數的最小公倍數。
自然數a、b的最小公倍數可以記作[a,b],自然數a、b的最大公因數可以記作(a、b),當(a、b)=1時,[a、b]= a×b。如果兩個數是倍數關係,則它們的最小公倍數就是較大的數,相鄰的兩個自然數的最小公倍數是它們的乘積。最小公倍數=兩數的乘積/最大公約(因)數, 解題時要避免和最大公約(因)數問題混淆。
最小公倍數的適用範圍:分數的加減法,中國剩餘定理(正確的題在最小公倍數內有解,有唯一的解)。因為,素數是不能被1和自身數以外的其它數整除的數;素數X的N次方,是隻能被X的N及以下次方,1和自身數整除。所以,給最小公倍數下一個定義:S個數的最小公倍數,為這S個數中所含素因子的最高次方之間的乘積。