首頁>Club>
8
回覆列表
  • 1 # 使用者3013958441215

    ∫ x²/(1+x^4) dx

    =(1/2)∫ (x²-1+x²+1)/(1+x^4) dx

    =(1/2)∫ (x²-1)/(1+x^4) dx + (1/2)∫ (x²+1)/(1+x^4) dx

    分子分同除以x²

    =(1/2)∫ (1-1/x²)/(1/x²+x²) dx + (1/2)∫ (1+1/x²)/(1/x²+x²) dx

    分子放到微分之後

    =(1/2)∫ 1/(1/x²+x²) d(x+1/x) + (1/2)∫ 1/(1/x²+x²) d(x-1/x)

    =(1/2)∫ 1/(1/x²+x²+2-2) d(x+1/x) + (1/2)∫ 1/(1/x²+x²-2+2) d(x-1/x)

    =(1/2)∫ 1/[(x+1/x)²-2] d(x+1/x) + (1/2)∫ 1/[(x-1/x)²+2] d(x-1/x)

    =(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)| + (√2/4)arctan[(x-1/x)/√2] + C

    =(√2/8)ln|(x²+1-√2x)/(x²+1+√2x)| + (√2/4)arctan[(x-1/x)/√2] + C

  • 中秋節和大豐收的關聯?
  • 一個半月的孩子,吃完奶總吐是怎麼回事?