(1)由bn=an-1,得an=bn+1,代入2an=1+anan+1,
得2(bn+1)=1+(bn+1)(bn+1+1),
∴bnbn+1+bn+1-bn=0,從而有
1
bn+1?
bn=1,
∵b1=a1-1=2-1=1,
∴{
bn}是首項為1,公差為1的等差數列,
∴
bn=n,即bn=
n;
∴an=
n+1=
n+1
n,
(2)由題意可知:cn=bnbn+1=
n(n+1)=
n?
n+1,
∴sn=cn+cn+cn+…+cn=1-
2+
2?
3+
3?
4+…+
=1-
n+1<1.
即sn<1.
(1)由bn=an-1,得an=bn+1,代入2an=1+anan+1,
得2(bn+1)=1+(bn+1)(bn+1+1),
∴bnbn+1+bn+1-bn=0,從而有
1
bn+1?
1
bn=1,
∵b1=a1-1=2-1=1,
∴{
1
bn}是首項為1,公差為1的等差數列,
∴
1
bn=n,即bn=
1
n;
∴an=
1
n+1=
n+1
n,
(2)由題意可知:cn=bnbn+1=
1
n(n+1)=
1
n?
1
n+1,
∴sn=cn+cn+cn+…+cn=1-
1
2+
1
2?
1
3+
1
3?
1
4+…+
1
n?
1
n+1
=1-
1
n+1<1.
即sn<1.