和差化積公式,包括正弦、餘弦、正切和餘切的和差化積公式,是三角函式中的一組恆等式。和差化積二倍半,和前函式名不變;餘弦穩正弦跳,餘弦相減取負號,和差化積公式在數學中的應用很多,下面是高三網小編整理的和差化積公式大全及推導過程,希望對同學們的數學學習有幫助。
1和差化積公式大全
sinα+sinβ=2sin[(α+β)/2]²cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]²sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]²cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]²sin[(α-β)/2]
sinα²cosβ=0.5[sin(α+β)+sin(α-β)]
cosα²sinβ=0.5[sin(α+β)-sin(α-β)]
cosα²cosβ=0.5[cos(α+β)+cos(α-β)]
sinα²sinβ=-0.5[cos(α+β)-cos(α-β)]
2和差化積公式推導過程
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb
cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
有了積化和差的四個公式
和差化積公式,包括正弦、餘弦、正切和餘切的和差化積公式,是三角函式中的一組恆等式。和差化積二倍半,和前函式名不變;餘弦穩正弦跳,餘弦相減取負號,和差化積公式在數學中的應用很多,下面是高三網小編整理的和差化積公式大全及推導過程,希望對同學們的數學學習有幫助。
1和差化積公式大全
sinα+sinβ=2sin[(α+β)/2]²cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]²sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]²cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]²sin[(α-β)/2]
sinα²cosβ=0.5[sin(α+β)+sin(α-β)]
cosα²sinβ=0.5[sin(α+β)-sin(α-β)]
cosα²cosβ=0.5[cos(α+β)+cos(α-β)]
sinα²sinβ=-0.5[cos(α+β)-cos(α-β)]
2和差化積公式推導過程
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb
sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb
cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
有了積化和差的四個公式