解:設等差數列首項為a1,公差為d
則Sm=ma1+[m(m-1)d/2]
Sn=na1+[n(n-1)d/2]
(1)若sm=n sn=m則有
sm=ma1+[m(m-1)/2]d=n
sn=na1+[n(n-1)/2]d=m
上兩式相減有
(m-n){a1+[(m+n-1)/2]-1}=0
∵m≠n
∴a1+[(m+n-1)/2]d+1=0
即a1+[(m+n-1)]d=-1
∴sm+n=(m+n)a1+[(m+n)(m+n-1)/2]d
=(m+n){a1+[(m+n-1)/2]d}
=-(m+n)
(2)若Sm=Sn則有
ma1+[m(m-1)d/2]=na1+[n(n-1)d/2
即(m-n)a1=(n-m)(n+m-1)d/2
∵m≠n∴a1=-(n+m-1)d/2
∴Sm+n=(m+n)a1+[(m+n)(m+n-1)d/2]
=(m+n)*[-(n+m-1)d/2]+[(n+n)(m+n-1)d/2]
=[(m+n)d/2][-(n+m-1)+(n+m-1)]
=0
即Sm+n=0
解:設等差數列首項為a1,公差為d
則Sm=ma1+[m(m-1)d/2]
Sn=na1+[n(n-1)d/2]
(1)若sm=n sn=m則有
sm=ma1+[m(m-1)/2]d=n
sn=na1+[n(n-1)/2]d=m
上兩式相減有
(m-n){a1+[(m+n-1)/2]-1}=0
∵m≠n
∴a1+[(m+n-1)/2]d+1=0
即a1+[(m+n-1)]d=-1
∴sm+n=(m+n)a1+[(m+n)(m+n-1)/2]d
=(m+n){a1+[(m+n-1)/2]d}
=-(m+n)
(2)若Sm=Sn則有
ma1+[m(m-1)d/2]=na1+[n(n-1)d/2
即(m-n)a1=(n-m)(n+m-1)d/2
∵m≠n∴a1=-(n+m-1)d/2
∴Sm+n=(m+n)a1+[(m+n)(m+n-1)d/2]
=(m+n)*[-(n+m-1)d/2]+[(n+n)(m+n-1)d/2]
=[(m+n)d/2][-(n+m-1)+(n+m-1)]
=0
即Sm+n=0