方差分析的應用條件為:
1、各樣本須是相互獨立的隨機樣本。
2、各樣本來自正態分佈總體。
3、各總體方差相等,即方差齊。
方差分析的用途:
1、兩個或多個樣本均數間的比較。
2、分析兩個或多個因素間的互動作用。
3、迴歸方程的線性假設檢驗。
4、多元線性迴歸分析中偏回歸係數的假設檢驗。
5、兩樣本的方差齊性檢驗等。
由於各種因素的影響,研究所得的資料呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。
擴充套件資料:
1、實驗條件,即不同的處理造成的差異,稱為組間差異。用變數在各組的均值與總均值之偏差平方和的總和表示,記作SSb,組間自由度dfb。
2、隨機誤差,如測量誤差造成的差異或個體間的差異,稱為組內差異,用變數在各組的均值與該組內變數值之偏差平方和的總和表示, 記作SSw,組內自由度dfw。
總偏差平方和 SSt = SSb + SSw。
根據資料設計型別的不同,有以下兩種方差分析的方法:
1、對成組設計的多個樣本均值比較,應採用完全隨機設計的方差分析,即單因素方差分析。
2、對隨機區組設計的多個樣本均值比較,應採用配伍組設計的方差分析,即兩因素方差分析。
在觀測變數總離差平方和中,如果組間離差平方和所佔比例較大,則說明觀測變數的變動主要是由控制變數引起的,可以主要由控制變數來解釋,控制變數給觀測變數帶來了顯著影響。
反之,如果組間離差平方和所佔比例小,則說明觀測變數的變動不是主要由控制變數引起的,不可以主要由控制變數來解釋,控制變數的不同水平沒有給觀測變數帶來顯著影響,觀測變數值的變動是由隨機變數因素引起的。
方差分析的應用條件為:
1、各樣本須是相互獨立的隨機樣本。
2、各樣本來自正態分佈總體。
3、各總體方差相等,即方差齊。
方差分析的用途:
1、兩個或多個樣本均數間的比較。
2、分析兩個或多個因素間的互動作用。
3、迴歸方程的線性假設檢驗。
4、多元線性迴歸分析中偏回歸係數的假設檢驗。
5、兩樣本的方差齊性檢驗等。
由於各種因素的影響,研究所得的資料呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。
擴充套件資料:
1、實驗條件,即不同的處理造成的差異,稱為組間差異。用變數在各組的均值與總均值之偏差平方和的總和表示,記作SSb,組間自由度dfb。
2、隨機誤差,如測量誤差造成的差異或個體間的差異,稱為組內差異,用變數在各組的均值與該組內變數值之偏差平方和的總和表示, 記作SSw,組內自由度dfw。
總偏差平方和 SSt = SSb + SSw。
根據資料設計型別的不同,有以下兩種方差分析的方法:
1、對成組設計的多個樣本均值比較,應採用完全隨機設計的方差分析,即單因素方差分析。
2、對隨機區組設計的多個樣本均值比較,應採用配伍組設計的方差分析,即兩因素方差分析。
在觀測變數總離差平方和中,如果組間離差平方和所佔比例較大,則說明觀測變數的變動主要是由控制變數引起的,可以主要由控制變數來解釋,控制變數給觀測變數帶來了顯著影響。
反之,如果組間離差平方和所佔比例小,則說明觀測變數的變動不是主要由控制變數引起的,不可以主要由控制變數來解釋,控制變數的不同水平沒有給觀測變數帶來顯著影響,觀測變數值的變動是由隨機變數因素引起的。