D是0<x<1,0<y<x對應的區域,
則
E(X)=∫∫[D]xp(x,y)dxdy
=∫[0~1]dx∫[0~x]2xdy
=∫[0~1]2x²dx
=2/3
E(Y)=∫∫[D]yp(x,y)dxdy
=∫[0~1]dx∫[0~x]2ydy
=∫[0~1]x²dx
=1/3
E(X²)=∫∫[D]x²p(x,y)dxdy
=∫[0~1]dx∫[0~x]2x²dy
=∫[0~1]2x³dx
=1/2
E(Y²)=∫∫[D]y²p(x,y)dxdy
=∫[0~1]dx∫[0~x]2y²dy
=∫[0~1]2/3·x³dx
=1/6
E(XY)=∫∫[D]xyp(x,y)dxdy
=∫[0~1]dx∫[0~x]2xydy
=∫[0~1]x³dx
=1/4
D(X)=E(X²)-E²(X)=1/18
D(Y)=E(Y²)-E²(Y)=1/18
Cov(XY)=E(XY)-E(X)E(Y)=1/36
∴相關係數為
ρ=Cov(XY)÷√[D(X)·D(Y)]=1/2
D是0<x<1,0<y<x對應的區域,
則
E(X)=∫∫[D]xp(x,y)dxdy
=∫[0~1]dx∫[0~x]2xdy
=∫[0~1]2x²dx
=2/3
E(Y)=∫∫[D]yp(x,y)dxdy
=∫[0~1]dx∫[0~x]2ydy
=∫[0~1]x²dx
=1/3
E(X²)=∫∫[D]x²p(x,y)dxdy
=∫[0~1]dx∫[0~x]2x²dy
=∫[0~1]2x³dx
=1/2
E(Y²)=∫∫[D]y²p(x,y)dxdy
=∫[0~1]dx∫[0~x]2y²dy
=∫[0~1]2/3·x³dx
=1/6
E(XY)=∫∫[D]xyp(x,y)dxdy
=∫[0~1]dx∫[0~x]2xydy
=∫[0~1]x³dx
=1/4
D(X)=E(X²)-E²(X)=1/18
D(Y)=E(Y²)-E²(Y)=1/18
Cov(XY)=E(XY)-E(X)E(Y)=1/36
∴相關係數為
ρ=Cov(XY)÷√[D(X)·D(Y)]=1/2