熵的概念源自熱力學,用於表徵系統的無序度(或說混亂度)。無序度越高,熵越大,系統也越穩定。在熱力學中,無序是指系統所能達到的不同微觀狀態的數量,因為系統有一個特定的組成、體積、能量、壓力和溫度。
熱力學第二定律表明,孤立系統總是存在從高有序度轉變成低有序度的趨勢,此即為熵增原理。例如,打碎的玻璃無法復原、墨水滴入清水中會逐漸分散、鮮花開放會使周圍香氣四溢。這些自發過程都是不可逆的,系統的混亂度會變高,即熵會增加。按照熵的定義,同一種物質在不同狀態所具有的熵是以如下的順序排列:氣態>>液態>>固態。
此外,溫度也會影響系統的熵。舉個例子,用火加熱水壺中的水,不久後,水就會沸騰。本質上,火的熱量使水分子的熱運動加劇。如果熱源被移走,水會自發地冷卻到室溫。這也是由熵增引起的,因為水分子傾向於消耗掉所積累的勢能,從而會把熱量釋放掉,最後處於一種較低勢能的狀態。
我們知道,從大爆炸以來,宇宙一直在不斷膨脹。如果我們的宇宙是一個孤立的系統,由於熵增原理,宇宙的無序度會隨著膨脹而逐漸增加。在一定的時間之後,熵增加到最大,宇宙的無序度達到最大,最終整個宇宙達到熱平衡的狀態,一切演化全部終止,這是宇宙的可能歸宿之一,即熱寂。然而,如果宇宙中存在某種機制能夠使熵減少,比如真空中的隨機量子漲落,宇宙最終可能又會回到最初的奇點,進而再次大爆炸。
熵的概念源自熱力學,用於表徵系統的無序度(或說混亂度)。無序度越高,熵越大,系統也越穩定。在熱力學中,無序是指系統所能達到的不同微觀狀態的數量,因為系統有一個特定的組成、體積、能量、壓力和溫度。
熱力學第二定律表明,孤立系統總是存在從高有序度轉變成低有序度的趨勢,此即為熵增原理。例如,打碎的玻璃無法復原、墨水滴入清水中會逐漸分散、鮮花開放會使周圍香氣四溢。這些自發過程都是不可逆的,系統的混亂度會變高,即熵會增加。按照熵的定義,同一種物質在不同狀態所具有的熵是以如下的順序排列:氣態>>液態>>固態。
此外,溫度也會影響系統的熵。舉個例子,用火加熱水壺中的水,不久後,水就會沸騰。本質上,火的熱量使水分子的熱運動加劇。如果熱源被移走,水會自發地冷卻到室溫。這也是由熵增引起的,因為水分子傾向於消耗掉所積累的勢能,從而會把熱量釋放掉,最後處於一種較低勢能的狀態。
我們知道,從大爆炸以來,宇宙一直在不斷膨脹。如果我們的宇宙是一個孤立的系統,由於熵增原理,宇宙的無序度會隨著膨脹而逐漸增加。在一定的時間之後,熵增加到最大,宇宙的無序度達到最大,最終整個宇宙達到熱平衡的狀態,一切演化全部終止,這是宇宙的可能歸宿之一,即熱寂。然而,如果宇宙中存在某種機制能夠使熵減少,比如真空中的隨機量子漲落,宇宙最終可能又會回到最初的奇點,進而再次大爆炸。