1
原式=(1/2)*(3/2)*(2/3)*(4/3)*(3/4)*(5/4)*.(98/99)*
(100/99)
=分子與分母相同的就相抵消
=(1/2)*(100/99)
=50/99
2
1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
=(1-1/2)+(1-1/4)+(1-1/8).(1-1/256)
=(1+1+1+1+1+1+1+1)-(1/2+1/4+1/8+1/16+1/32+.1/256)
=8-(1-1/256)
=8-1+1/256
=7+1/256
另解
an=(2^n-1)/2^n=1-1/2^n
Sn=8*1-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)
=8-0.5(1-0.5^8)/1-0.5
=8-255/256
=1793/256
3
(1/2×3×4)+(1/3×4×5)+(1/4×5×6)+…+(1/8×9×10)
=6+20/3+15/2+42/5+28/3+72/7+45/4
=8321/140
1
原式=(1/2)*(3/2)*(2/3)*(4/3)*(3/4)*(5/4)*.(98/99)*
(100/99)
=分子與分母相同的就相抵消
=(1/2)*(100/99)
=50/99
2
1/2+3/4+7/8+15/16+31/32+63/64+127/128+255/256
=(1-1/2)+(1-1/4)+(1-1/8).(1-1/256)
=(1+1+1+1+1+1+1+1)-(1/2+1/4+1/8+1/16+1/32+.1/256)
=8-(1-1/256)
=8-1+1/256
=7+1/256
另解
an=(2^n-1)/2^n=1-1/2^n
Sn=8*1-(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)
=8-0.5(1-0.5^8)/1-0.5
=8-255/256
=1793/256
3
(1/2×3×4)+(1/3×4×5)+(1/4×5×6)+…+(1/8×9×10)
=6+20/3+15/2+42/5+28/3+72/7+45/4
=8321/140