作單位圓O,∠AOB=ß,∠BOC=ạ,半徑OA=OB=OC=R,
AD⊥OC於D,交OB於E,AF⊥OB於F,∠EAF=∠BOC=ạ
求證:sin(ạ+ß)=sinạcosß+sinßcosạ,
sin(ạ+ß)=(AE+ED)/R
∵AF/AE=cosạ, AF=Rsinß, ∴AE=AF/cosạ=Rsinß/cosạ,
∵ED=OEsinạ, OE=OF-EF, OF=Rcosß, EF=AEsinạ=Rsinạsinß/cosạ,
∴OE=OF-EF=Rcosß-Rsinạsinß/cosạ,
ED=OEsinạ=(Rcosß-Rsinạsinß/cosạ)*sinạ=Rsinạcosß-Rsinạ²ạsinß/cosạ,
∴sin(ạ+ß)=(AE+ED)/R
=(Rsinß/cosạ+Rsinạcosß-Rsinạ²ạsinß/cosạ)/R
= sinß/cosạ+sinạcosß-sin²ạ sinß/cosạ
=sinạcosß+sinß/cosạ(1-sin²ạ)
=sinạcosß+cosạ²sinß/cosạ
=sinạcosß+sinßcosạ.
作單位圓O,∠AOB=ß,∠BOC=ạ,半徑OA=OB=OC=R,
AD⊥OC於D,交OB於E,AF⊥OB於F,∠EAF=∠BOC=ạ
求證:sin(ạ+ß)=sinạcosß+sinßcosạ,
sin(ạ+ß)=(AE+ED)/R
∵AF/AE=cosạ, AF=Rsinß, ∴AE=AF/cosạ=Rsinß/cosạ,
∵ED=OEsinạ, OE=OF-EF, OF=Rcosß, EF=AEsinạ=Rsinạsinß/cosạ,
∴OE=OF-EF=Rcosß-Rsinạsinß/cosạ,
ED=OEsinạ=(Rcosß-Rsinạsinß/cosạ)*sinạ=Rsinạcosß-Rsinạ²ạsinß/cosạ,
∴sin(ạ+ß)=(AE+ED)/R
=(Rsinß/cosạ+Rsinạcosß-Rsinạ²ạsinß/cosạ)/R
= sinß/cosạ+sinạcosß-sin²ạ sinß/cosạ
=sinạcosß+sinß/cosạ(1-sin²ạ)
=sinạcosß+cosạ²sinß/cosạ
=sinạcosß+sinßcosạ.