(1)一次函式y=(-1/2)x+5交X軸於B(10,0),則OB=10;設其與Y軸交於M(0, 5).
把兩個函式y=(-1/2)x+5與y=kx聯立方程組並解之得:x=5/(k+0.5); y=5k/(k+0.5).
則點A的座標為(5/[k+0.5], 5k/[k+0.5]).
作AD垂直OB於D,CH垂直OB於H,由四邊形OABC為平行四邊形可知:
CH=AD=5k/(k+0.5),BH=OD=5/(k+0.5),OH=OB-BH=10-5/(k+0.5)=10k/(k+0.5).
∴點C的座標為(10k/[k+0.5], 5/[k+0.5]).
(2)若四邊形OABC為矩形,則⊿ODA∽⊿ADB∽⊿MOB.
則AD/OD=BO/MO=10/5=2,AD=2OD,即5/(k+0.5)=2[5/(k+0.5)], k=2.
(3)k=2時: 5/(k+0.5)=2; 5k/(k+0.5)=4.即點A為(2,4).
①當點A落在Y軸正半軸上的A"處時(如中圖):
OA=√(OD?AD?=2√5;AB=√(OB?OA?=4√5=A"B".
把x=4√5代入y=(-1/2)x+5,得:y=(-1/2)×4√5+5=5-2√5.則C"E=5-2√5;BC"=2C"E=10-4√5.
∴S重疊(OAEC")=S⊿OAB-S⊿BC"E=10*4/2-(10-4√5)*(5-2√5)/2=40√5-70;
②當點A落在X正半軸上的點A"處時(如右圖):
設A"B"交OC於F.則OA"=OA=2√5,同理由⊿OA"F∽⊿OCB可知:
OA"/A"F=OC/CB=(4√5)/(2√5)=2,則OA"=2A"F,A"F=OA"/2=√5.
∴S重疊(OA"F)=OA"*A"F/2=(2√5)*(√5)/2=5.
(1)一次函式y=(-1/2)x+5交X軸於B(10,0),則OB=10;設其與Y軸交於M(0, 5).
把兩個函式y=(-1/2)x+5與y=kx聯立方程組並解之得:x=5/(k+0.5); y=5k/(k+0.5).
則點A的座標為(5/[k+0.5], 5k/[k+0.5]).
作AD垂直OB於D,CH垂直OB於H,由四邊形OABC為平行四邊形可知:
CH=AD=5k/(k+0.5),BH=OD=5/(k+0.5),OH=OB-BH=10-5/(k+0.5)=10k/(k+0.5).
∴點C的座標為(10k/[k+0.5], 5/[k+0.5]).
(2)若四邊形OABC為矩形,則⊿ODA∽⊿ADB∽⊿MOB.
則AD/OD=BO/MO=10/5=2,AD=2OD,即5/(k+0.5)=2[5/(k+0.5)], k=2.
(3)k=2時: 5/(k+0.5)=2; 5k/(k+0.5)=4.即點A為(2,4).
①當點A落在Y軸正半軸上的A"處時(如中圖):
OA=√(OD?AD?=2√5;AB=√(OB?OA?=4√5=A"B".
把x=4√5代入y=(-1/2)x+5,得:y=(-1/2)×4√5+5=5-2√5.則C"E=5-2√5;BC"=2C"E=10-4√5.
∴S重疊(OAEC")=S⊿OAB-S⊿BC"E=10*4/2-(10-4√5)*(5-2√5)/2=40√5-70;
②當點A落在X正半軸上的點A"處時(如右圖):
設A"B"交OC於F.則OA"=OA=2√5,同理由⊿OA"F∽⊿OCB可知:
OA"/A"F=OC/CB=(4√5)/(2√5)=2,則OA"=2A"F,A"F=OA"/2=√5.
∴S重疊(OA"F)=OA"*A"F/2=(2√5)*(√5)/2=5.