(僅僅站在數學角度回答此問題)
圓柱形玻璃杯,
容積為:
πr²h = π4²×8 = 128π cm³
水的密度是 1g/cm³,因此當這個玻璃杯裝滿水時,水的質量是 128π g,這當然是無理數。
事實上,任意給定一個物體 a,我們都可以測量(measure)出它的 質量,記為 m(a) ,質量是一個 實數, 即,m(a) ∈ R(R 表示實數集合)而且 m(a) ≥ 0 。
另外,基於質量守恆定律,我們知道,對於 a 和 b 兩個各自獨立的物體,它們相加後的質量 等於 相加前 各自的質量之和 ,即:
m(a + b) = m(a) + m(b)
數學上,對以上事實,進行了抽象:
設 X 是一個非空集合,ε 是 X 的子集組成的集族,定義 該集族 到 實數集 的 函式 f: ε → R,如果 f 滿足,
非負性:對於任意 A ∈ ε , 有 f(A) ≥ 0;
可列可加性:對於 任何 無限多個 兩兩不相交子集序列 A₁, A₂, ... ∈ ε,若 A₁ ∪ A₂ ∪ ... ∈ ε,則有 f(A₁ + A₂ + ...) = f(A₁) + f(A₂) + ...
則稱,函式 f 為 測度。
顯然,上面對於物體質量的測量 m,就是測度。
我們,在 九年義務教育《數學》二年級 上冊 中學到的 長度,已經後來《數學》中,學到的 面積、體積,都是 測度。
測度,是一個非常重要的概念,基於它我們 繼 無窮小量,極限 後 重新建立了 微積分基礎。
綜上,在數學上 質量是一種 測度,而測度 的 值域 就是 實數,實數當然包括無理數,故 質量當然可以是無理數了。
(僅僅站在數學角度回答此問題)
圓柱形玻璃杯,
容積為:
πr²h = π4²×8 = 128π cm³
水的密度是 1g/cm³,因此當這個玻璃杯裝滿水時,水的質量是 128π g,這當然是無理數。
事實上,任意給定一個物體 a,我們都可以測量(measure)出它的 質量,記為 m(a) ,質量是一個 實數, 即,m(a) ∈ R(R 表示實數集合)而且 m(a) ≥ 0 。
另外,基於質量守恆定律,我們知道,對於 a 和 b 兩個各自獨立的物體,它們相加後的質量 等於 相加前 各自的質量之和 ,即:
m(a + b) = m(a) + m(b)
數學上,對以上事實,進行了抽象:
設 X 是一個非空集合,ε 是 X 的子集組成的集族,定義 該集族 到 實數集 的 函式 f: ε → R,如果 f 滿足,
非負性:對於任意 A ∈ ε , 有 f(A) ≥ 0;
可列可加性:對於 任何 無限多個 兩兩不相交子集序列 A₁, A₂, ... ∈ ε,若 A₁ ∪ A₂ ∪ ... ∈ ε,則有 f(A₁ + A₂ + ...) = f(A₁) + f(A₂) + ...
則稱,函式 f 為 測度。
顯然,上面對於物體質量的測量 m,就是測度。
我們,在 九年義務教育《數學》二年級 上冊 中學到的 長度,已經後來《數學》中,學到的 面積、體積,都是 測度。
測度,是一個非常重要的概念,基於它我們 繼 無窮小量,極限 後 重新建立了 微積分基礎。
綜上,在數學上 質量是一種 測度,而測度 的 值域 就是 實數,實數當然包括無理數,故 質量當然可以是無理數了。