數學一元二次方程中的一種解法(其他兩種為公式法和分解法)
具體過程如下:
1.將此一元二次方程化為ax^2+bx+c=0的形式(此一元二次方程滿足有實根)
2.將二次項係數化為1
3.將常數項移到等號右側
4.等號左右兩邊同時加上一次項係數一半的平方
5.將等號左邊的代數式寫成完全平方形式
6.左右同時開平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25(+2.25:加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等)
5.(x-1.5)^2=0.25(a^2+2b+1=0即(a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1[編輯本段]二次函式配方法技巧: y=ax^2-bx+c轉換為y=a(x+h)^2+k
=a(x+b/2a)^2+(c-b^2/4a)
數學一元二次方程中的一種解法(其他兩種為公式法和分解法)
具體過程如下:
1.將此一元二次方程化為ax^2+bx+c=0的形式(此一元二次方程滿足有實根)
2.將二次項係數化為1
3.將常數項移到等號右側
4.等號左右兩邊同時加上一次項係數一半的平方
5.將等號左邊的代數式寫成完全平方形式
6.左右同時開平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25(+2.25:加上3一半的平方,同時-2也要加上3一半的平方讓等式兩邊相等)
5.(x-1.5)^2=0.25(a^2+2b+1=0即(a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1[編輯本段]二次函式配方法技巧: y=ax^2-bx+c轉換為y=a(x+h)^2+k
=a(x+b/2a)^2+(c-b^2/4a)