冪函式導數公式:
y=x^a
兩邊取對數lny=alnx
兩邊對x求導(1/y)*y"=a/x
所以y"=ay/x=ax^a/x=ax^(a-1)
在這個過程之中:
1、lny 首先是 y 的函式,y 又是 x 的函式,所以,lny 也是 x 的函式。
2、lny 是一目瞭然的,是顯而易見的,是直截了當的,所以稱它為顯函式,explicit function。
3、設 u = lny,u 是 y 的顯函式,它也是 x 的函式,由於是隱含的,稱為隱函式,implicit。
4、u 對 y 求導是 1/y,這是對 y 求導,不是對 x 求導。
5、u 是 x 的隱函式,u 對 x 求導,用鏈式求導,chain rule。
6、u 對 x 的求導,是先對 y 求導,然後乘上 y 對 x 的求導,也就是:
du/dy = 1/y
du/dx = (du/dy) × (dy/dx) = (1/y) × y" = (1/y)y"。
擴充套件資料:
正值性質
當α>0時,冪函式y=xα有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0(函式值遞增);
負值性質
當α<0時,冪函式y=xα有下列性質:
a、影象都透過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為X-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0
冪函式導數公式:
y=x^a
兩邊取對數lny=alnx
兩邊對x求導(1/y)*y"=a/x
所以y"=ay/x=ax^a/x=ax^(a-1)
在這個過程之中:
1、lny 首先是 y 的函式,y 又是 x 的函式,所以,lny 也是 x 的函式。
2、lny 是一目瞭然的,是顯而易見的,是直截了當的,所以稱它為顯函式,explicit function。
3、設 u = lny,u 是 y 的顯函式,它也是 x 的函式,由於是隱含的,稱為隱函式,implicit。
4、u 對 y 求導是 1/y,這是對 y 求導,不是對 x 求導。
5、u 是 x 的隱函式,u 對 x 求導,用鏈式求導,chain rule。
6、u 對 x 的求導,是先對 y 求導,然後乘上 y 對 x 的求導,也就是:
du/dy = 1/y
du/dx = (du/dy) × (dy/dx) = (1/y) × y" = (1/y)y"。
擴充套件資料:
正值性質
當α>0時,冪函式y=xα有下列性質:
a、影象都經過點(1,1)(0,0);
b、函式的影象在區間[0,+∞)上是增函式;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0(函式值遞增);
負值性質
當α<0時,冪函式y=xα有下列性質:
a、影象都透過點(1,1);
b、影象在區間(0,+∞)上是減函式;(內容補充:若為X-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。
c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0