∫dx/[(2+cosx)sinx]
=∫sinxdx/[(2+cosx)sin^2x]
=-∫dcosx/[(2+cosx)(1-cos^2x)]
=∫[A/(2+cosx)+B/(1-cosx)+C/(1+cosx)]dcosx
=∫[(1/3)/(2+cosx)-(1/6)/(1-cosx)-(1/2)/(1+cosx)]dcosx
=(1/3)∫dcosx/(cosx+2)-(1/2)∫dcosx/(cosx+1)+(1/6)∫dcosx/(cosx-1)
=(1/3)ln(cosx+2)-(1/2)ln(cosx+1)+(1/6)ln(1-cosx)+C.
=(1/6)ln[(cosx+2)^2*(1-cosx)/(cosx+1)^3]+C.
方法二:
主要思路:三角換元,設tanx/2=t,則x=2arctant。
代入不定積分得:
=∫d(2arctant)/{[2+(1-t^2)/(1+t^2)]*[2t/(t^2+1)]}
=2∫dt/{[2+(1-t^2)/(1+t^2)]*2t}
=∫(t^2+1)dt/[t(t^2+3)]
=(1/3)∫dt/t+(2/3)∫tdt/(t^2+3)
=(1/3)lnt+(1/3)∫dt^2/(t^2+3)
=(1/3)ln(tanx/2)+(1/3)ln[(tanx/2)^2+3]+C
=(1/3)ln{(tanx/2)*[(tanx/2)^2+3]}+C
可見:同一個不定積分的原函式表示式不唯一,但最終可以化簡成同一個函式。
∫dx/[(2+cosx)sinx]
=∫sinxdx/[(2+cosx)sin^2x]
=-∫dcosx/[(2+cosx)(1-cos^2x)]
=∫[A/(2+cosx)+B/(1-cosx)+C/(1+cosx)]dcosx
=∫[(1/3)/(2+cosx)-(1/6)/(1-cosx)-(1/2)/(1+cosx)]dcosx
=(1/3)∫dcosx/(cosx+2)-(1/2)∫dcosx/(cosx+1)+(1/6)∫dcosx/(cosx-1)
=(1/3)ln(cosx+2)-(1/2)ln(cosx+1)+(1/6)ln(1-cosx)+C.
=(1/6)ln[(cosx+2)^2*(1-cosx)/(cosx+1)^3]+C.
方法二:
主要思路:三角換元,設tanx/2=t,則x=2arctant。
代入不定積分得:
∫dx/[(2+cosx)sinx]
=∫d(2arctant)/{[2+(1-t^2)/(1+t^2)]*[2t/(t^2+1)]}
=2∫dt/{[2+(1-t^2)/(1+t^2)]*2t}
=∫(t^2+1)dt/[t(t^2+3)]
=(1/3)∫dt/t+(2/3)∫tdt/(t^2+3)
=(1/3)lnt+(1/3)∫dt^2/(t^2+3)
=(1/3)ln(tanx/2)+(1/3)ln[(tanx/2)^2+3]+C
=(1/3)ln{(tanx/2)*[(tanx/2)^2+3]}+C
可見:同一個不定積分的原函式表示式不唯一,但最終可以化簡成同一個函式。