回覆列表
  • 1 # s1985516s

    三角函式的影象關於y軸對稱就是偶函式,關於原點中心對稱就是奇函式。

    三角函式是基本初等函式之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。在數學分析中,三角函式也被定義為無窮級數或特定微分方程的解,允許它們的取值擴充套件到任意實數值,甚至是複數值。

    常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恆等式。

    三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。另外,以三角函式為模版,可以定義一類相似的函式,叫做雙曲函式。常見的雙曲函式也被稱為雙曲正弦函式、雙曲餘弦函式等等。三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。

    在直角三角形中,當平面上的三點A、B、C的連線,AB、AC、BC,構成一個直角三角形,其中∠ACB為直角。對∠BAC而言,對邊(opposite)a=BC、斜邊(hypotenuse)c=AB、鄰邊(adjacent)b=AC,則存在以下關係:

    1)對角相乘乘積為1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。

    2)六邊形任意相鄰的三個頂點代表的三角函式,處於中間位置的函式值等於與它相鄰兩個函式值的乘積,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ

    在平面直角座標系xOy中設∠β的始邊為x軸的正半軸,設點P(x,y)為∠β的終邊上不與原點O重合的任意一點,設r=OP,令∠β=∠α

    六個三角函式也可以依據半徑為1中心為原點的單位圓來定義。單位圓定義在實際計算上沒有大的價值;實際上對多數角它都依賴於直角三角形。但是單位圓定義的確允許三角函式對所有正數和負數輻角都有定義,而不只是對於在 0 和 π/2弧度之間的角。它也提供了一個影象,把所有重要的三角函式都包含了。根據勾股定理,單位圓的方程是:對於圓上的任意點(x,y),x2+y2=1。

    影象中給出了用弧度度量的一些常見的角:逆時針方向的度量是正角,而順時針的度量是負角。設一個過原點的線,同x軸正半部分得到一個角θ,並與單位圓相交。這個交點的x和y座標分別等於cosθ和sinθ。影象中的三角形確保了這個公式;半徑等於斜邊且長度為1,所以有 sinθ=y/1 和 cosθ=x/1。單位圓可以被視為是透過改變鄰邊和對邊的長度,但保持斜邊等於 1的一種檢視無限個三角形的方式。

  • 中秋節和大豐收的關聯?
  • 海底生靈資料?