16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數.在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家——納皮爾。 納皮爾當時是一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終於獨立發明了對數。
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。 這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。 在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
對數的運算性質:對數函式過定點(1,0),即x=1時,y=0。當0<a<1時,在(0,+∞)上是減函式;當a>1時,在(0,+∞)上是增函式。
對數函式運算性質
一般地,如果a(a>0,且a≠1)的b次冪等於N,那麼數b叫做以a為底N的對數,記作logaN=b,其中a叫做對數的底數,N叫做真數。
底數則要>0且≠1 真數>0
並且,在比較兩個函式值時:
如果底數一樣,真數越大,函式值越大。(a>1時)
如果底數一樣,真數越小,函式值越大。(0<a<1時)
對數函式的運算公式
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)(n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N;
log(a)a^b=b,證明:設a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M, log(a^n)M^m=(m/n)log(a)M
4.log(以n次根號下的a為底)(以n次根號下的M為真數)=log(a)M
log(以n次根號下的a為底)(以m次根號下的M為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
16世紀末至17世紀初的時候,當時在自然科學領域(特別是天文學)的發展上經常遇到大量精密而又龐大的數值計算,於是數學家們為了尋求化簡的計算方法而發明了對數.在數學史上,一般認為對數的發明者是十六世紀末到十七世紀初的蘇格蘭數學家——納皮爾。 納皮爾當時是一位天文愛好者,為了簡化計算,他多年潛心研究大數字的計算技術,終於獨立發明了對數。
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。 這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。 在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
對數的運算性質:對數函式過定點(1,0),即x=1時,y=0。當0<a<1時,在(0,+∞)上是減函式;當a>1時,在(0,+∞)上是增函式。
對數函式運算性質
一般地,如果a(a>0,且a≠1)的b次冪等於N,那麼數b叫做以a為底N的對數,記作logaN=b,其中a叫做對數的底數,N叫做真數。
底數則要>0且≠1 真數>0
並且,在比較兩個函式值時:
如果底數一樣,真數越大,函式值越大。(a>1時)
如果底數一樣,真數越小,函式值越大。(0<a<1時)
對數函式的運算公式
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)(n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N;
log(a)a^b=b,證明:設a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M, log(a^n)M^m=(m/n)log(a)M
4.log(以n次根號下的a為底)(以n次根號下的M為真數)=log(a)M
log(以n次根號下的a為底)(以m次根號下的M為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1