-
1 # 悟空百科匯
-
2 # 星座度
1.從個位起向左每隔兩位為一節,若帶有小數從小數點起向右每隔兩位一節,用“,”號將各節分開; 2.求不大於左邊第一節數的完全平方數,為“商”; 3.從左邊第一節數里減去求得的商,在它們的差的右邊寫上第二節數作為第一個餘數; 4.把商乘以20,試除第一個餘數,所得的最大整數作試商(如果這個最大整數大於或等於10,就用9或8作試商); 5.用商乘以20加上試商再乘以試商。如果所得的積小於或等於餘數,就把這個試商寫在商後面,作為新商;如果所得的積大於餘數,就把試商逐次減小再試,直到積小於或等於餘數為止; 6.用同樣的方法,繼續求。 追問: 沒有簡單方法嗎? 回答: 手動開平方 1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數;小數部分從最高位向後兩位一段隔開,段數以需要的精度+1為準。 2.根據左邊第一段裡的數,求得平方根的最高位上的數。(在右邊例題中,比5小的平方數是4,所以平方根的最高位為2。) 3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數。 4.把第二步求得的最高位的數乘以20去試除第一個餘數,所得的最大整數作為試商。(右例中的試商即為[152/(2×20)]=[3.8]=3。) 5. 中“手動開方的方法”,有改動和補充。】 以《九章算術》中求55225的開方為例,圖解說明。 | 5’ 52’ 25 (1) 2 | 5’ 52’ 25 (2) | 4 |1’ 52 (3) 152/(2×20)=3+... | 1’ 52’ (4) (2×20+3)×3=129 | 1’ 52’ (5) 1 29 | 23’ 25 (6) 2325/(23×20)=5+... | 23’ 25 (7) (23×20+5)×5=2325 | 23’ 25 (8) | 23’ 25 (9) 0 (10) 於是,235即為所求。
回覆列表
我們可以採取下面辦法,實際計算中不怕某一步算錯!!! 比如136161這個數字,首先我們找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這裡選350,作為代表。 我們計算0.5*(350 136161/350)得到369.5 然後我們再計算0.5*(369.5 136161/369.5)得到369.0003,我們發現369.5和369.0003相差無幾,並且,369^2末尾數字為1。我們有理由斷定369^2=136161 一般來說能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算469225的平方根。首先我們發現600^2<469225<700^2,我們可以挑選650作為第一次計算的數。即算 0.5*(650 469225/650)得到685.9。而685附近只有685^2末尾數字是5,因此685^2=469225 對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。 實際中這種演算法也是計算機用於開方的演算法