二次函式的解法 二次函式的通式是 y= ax^2+bx+c如果知道三個點 將三個點的座標代入也就是說三個方程解三個未知數 如題方程一8=a2+b2+c 化簡 8=c 也就是說c就是函式與Y軸的交點。 方程二7=a×36+b×6+c 化簡 7=36a+6b+c。 方程三7=a×(-6)2+b×(-6)+c化簡 7=36a-6b+c。 解出a,b,c 就可以了 。 上邊這種是老老實實的解法 。 對(6,7)(-6,7)這兩個座標 可以求出一個對稱軸也就是X=0 。 透過對稱軸公式x=-b/2a 也可以算 。 如果知道過x軸的兩個座標(y=0的兩個座標的值叫做這個方程的兩個根)也可以用對稱軸公式x=-b/2a算 。 或者使用韋達定理一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 。 設兩個根為X1和X2 則X1+X2= -b/a X1·X2=c/a 已知頂點(1,2)和另一任意點(3,10),設y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2一般式 y=ax^2+bx+c(a≠0,a、b、c為常數),頂點座標為(-b/2a,4ac-b^2/4a)頂點式 y=a(x-h)^2+k(a≠0,a、h、k為常數),頂點座標為(h,k)對稱軸為x=h,頂點的位置特徵和影象的開口方向與函式y=ax^2的影象相同,有時題目會指出讓你用配方法把一般式化成頂點式。交點式 y=a(x-x1)(x-x2) (a≠0) [僅限於與x軸即y=0有交點A(x1,0)和 B(x2,0)的拋物線,即b^2-4ac≥0] 由一般式變為交點式的步驟:二次函式(16張) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax^2+bx+c =a(x^2+b/ax+c/a) =a[﹙x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c為常數,a≠0,且a決定函式的開口方向。a>0時,開口方向向上;a<0時,開口方向向下。a的絕對值可以決定開口大小。a的絕對值越大開口就越小,a的絕對值越小開口就越大。
二次函式的解法 二次函式的通式是 y= ax^2+bx+c如果知道三個點 將三個點的座標代入也就是說三個方程解三個未知數 如題方程一8=a2+b2+c 化簡 8=c 也就是說c就是函式與Y軸的交點。 方程二7=a×36+b×6+c 化簡 7=36a+6b+c。 方程三7=a×(-6)2+b×(-6)+c化簡 7=36a-6b+c。 解出a,b,c 就可以了 。 上邊這種是老老實實的解法 。 對(6,7)(-6,7)這兩個座標 可以求出一個對稱軸也就是X=0 。 透過對稱軸公式x=-b/2a 也可以算 。 如果知道過x軸的兩個座標(y=0的兩個座標的值叫做這個方程的兩個根)也可以用對稱軸公式x=-b/2a算 。 或者使用韋達定理一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 。 設兩個根為X1和X2 則X1+X2= -b/a X1·X2=c/a 已知頂點(1,2)和另一任意點(3,10),設y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2一般式 y=ax^2+bx+c(a≠0,a、b、c為常數),頂點座標為(-b/2a,4ac-b^2/4a)頂點式 y=a(x-h)^2+k(a≠0,a、h、k為常數),頂點座標為(h,k)對稱軸為x=h,頂點的位置特徵和影象的開口方向與函式y=ax^2的影象相同,有時題目會指出讓你用配方法把一般式化成頂點式。交點式 y=a(x-x1)(x-x2) (a≠0) [僅限於與x軸即y=0有交點A(x1,0)和 B(x2,0)的拋物線,即b^2-4ac≥0] 由一般式變為交點式的步驟:二次函式(16張) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax^2+bx+c =a(x^2+b/ax+c/a) =a[﹙x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c為常數,a≠0,且a決定函式的開口方向。a>0時,開口方向向上;a<0時,開口方向向下。a的絕對值可以決定開口大小。a的絕對值越大開口就越小,a的絕對值越小開口就越大。