氫鍵與範德華力都是分子間,但在形成和結構上還是有區別的。1、形成不同氫鍵:在蛋白質的a-螺旋的情況下是N-H…O型的氫鍵,DNA的雙螺旋情況下是N-H…O,N-H…N型的氫鍵,因為這些結構是穩定的,所以這樣的氫鍵很多。此外,水和其他溶媒是異質的,也由於在水分子間生成O-H—…O型氫鍵。因此,這也就成為疏水結合形成的原因。範德華力:極性分子的永久偶極矩之間的相互作用。一個極性分子使另一個分子極化,產生誘導偶極矩並相互吸引。2、作用力不同氫鍵:氫原子與電負性大的原子X以共價鍵結合,若與電負性大、半徑小的原子Y(O F N等)接近,在X與Y之間以氫為媒介,生成X-H…Y形式的一種特殊的分子間或分子內相互作用。範德華力:分子間作用力只存在於分子(molecule)與分子之間或惰性氣體(noble gas)原子(atom)間的作用力。氫鍵屬不屬於分子間作用力,取決於對“分子間作用力”的定義。按照廣義範德華力定義[引力常數項可將各種極化能(偶極(dipole)、誘導(induced)和氫鍵能)歸併為一項來計算],氫鍵屬於分子間作用力。按照傳統定義:分子間作用力定義為:“分子的永久偶極和瞬間偶極引起的弱靜電相互作用”那麼氫鍵不屬於(因為氫鍵至少包含四種相互作用,只有三種與分子間作用力有交集,但還存在最高被佔用軌道與另一分子最低空餘軌道發生軌道重疊)。氫鍵既可以存在於分子內也可以存在於分子間。其次,氫鍵與分子間作用力的量子力學計算方法也是不一樣的。另外,氫鍵具有較高的選擇性,不嚴格的飽和性和方向性;而分子間作用力不具有。在“摺疊體化學”中,多氫鍵具有協同作用,誘導線性分子螺旋,而分子間作用力不具有協同效應。超強氫鍵具有類似共價鍵(covalent bond)本質,在學術上有爭議,必須和分子間作用力加以區分。氫鍵對化合物熔點和沸點的影響:分子間形成氫鍵時,化合物的熔點、沸點顯著升高。HF,H20和NH3等第二週期元素的氫化物,由於分子間氫鍵的存在,要使其固體熔化或液體氣化,必須給予額外的能量破壞分子間的氫鍵,所以它們的熔點、沸點均高於各自同族的氫化物。值得注意的是,能夠形成分子內氫鍵的物質,其分子間氫鍵的形成將被削弱,因此它們的熔點、沸點不如只能形成分子間氫鍵的物質高。硫酸、磷酸都是高沸點的無機強酸,但是硝酸由於可以生成分子內氫鍵的原因,卻是揮發性的無機強酸。可以生成分子內氫鍵的鄰硝基苯酚,其熔點遠低於它的同分異構體對硝基苯酚。由於具有靜電性質和定向性質,氫鍵在分子形成晶體的堆積過程中有一定作用。尤其當體系中形成較多氫鍵時,透過氫鍵連線成網路結構和多維結構在晶體工程學中有重要意義。
氫鍵與範德華力都是分子間,但在形成和結構上還是有區別的。1、形成不同氫鍵:在蛋白質的a-螺旋的情況下是N-H…O型的氫鍵,DNA的雙螺旋情況下是N-H…O,N-H…N型的氫鍵,因為這些結構是穩定的,所以這樣的氫鍵很多。此外,水和其他溶媒是異質的,也由於在水分子間生成O-H—…O型氫鍵。因此,這也就成為疏水結合形成的原因。範德華力:極性分子的永久偶極矩之間的相互作用。一個極性分子使另一個分子極化,產生誘導偶極矩並相互吸引。2、作用力不同氫鍵:氫原子與電負性大的原子X以共價鍵結合,若與電負性大、半徑小的原子Y(O F N等)接近,在X與Y之間以氫為媒介,生成X-H…Y形式的一種特殊的分子間或分子內相互作用。範德華力:分子間作用力只存在於分子(molecule)與分子之間或惰性氣體(noble gas)原子(atom)間的作用力。氫鍵屬不屬於分子間作用力,取決於對“分子間作用力”的定義。按照廣義範德華力定義[引力常數項可將各種極化能(偶極(dipole)、誘導(induced)和氫鍵能)歸併為一項來計算],氫鍵屬於分子間作用力。按照傳統定義:分子間作用力定義為:“分子的永久偶極和瞬間偶極引起的弱靜電相互作用”那麼氫鍵不屬於(因為氫鍵至少包含四種相互作用,只有三種與分子間作用力有交集,但還存在最高被佔用軌道與另一分子最低空餘軌道發生軌道重疊)。氫鍵既可以存在於分子內也可以存在於分子間。其次,氫鍵與分子間作用力的量子力學計算方法也是不一樣的。另外,氫鍵具有較高的選擇性,不嚴格的飽和性和方向性;而分子間作用力不具有。在“摺疊體化學”中,多氫鍵具有協同作用,誘導線性分子螺旋,而分子間作用力不具有協同效應。超強氫鍵具有類似共價鍵(covalent bond)本質,在學術上有爭議,必須和分子間作用力加以區分。氫鍵對化合物熔點和沸點的影響:分子間形成氫鍵時,化合物的熔點、沸點顯著升高。HF,H20和NH3等第二週期元素的氫化物,由於分子間氫鍵的存在,要使其固體熔化或液體氣化,必須給予額外的能量破壞分子間的氫鍵,所以它們的熔點、沸點均高於各自同族的氫化物。值得注意的是,能夠形成分子內氫鍵的物質,其分子間氫鍵的形成將被削弱,因此它們的熔點、沸點不如只能形成分子間氫鍵的物質高。硫酸、磷酸都是高沸點的無機強酸,但是硝酸由於可以生成分子內氫鍵的原因,卻是揮發性的無機強酸。可以生成分子內氫鍵的鄰硝基苯酚,其熔點遠低於它的同分異構體對硝基苯酚。由於具有靜電性質和定向性質,氫鍵在分子形成晶體的堆積過程中有一定作用。尤其當體系中形成較多氫鍵時,透過氫鍵連線成網路結構和多維結構在晶體工程學中有重要意義。