當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。垂線段是一個圖形,點到直線的距離是一個數量。
從直線外一點到這條直線的垂線段的長度,稱之點到直線的距離,若兩條直線相交,且相交後的四個角90°,則這兩條直線互相垂直,即為互為垂線。
垂線的定義中,只是規定了兩直線交角的大小(90°),並沒有規定兩條直線的位置如何。也就是說,不論一條直線的位置如何,只要另一條與它的交角是90°,其中任何一條直線就是另一條直線的垂線。
垂線的基本性質是:
(1)過直線上或直線外的一點,有且只有一條直線和已知直線垂直。
(2)從直線外一點到這條直線上各點所連的線段中,垂直線段最短。
擴充套件資料:
從直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。顯然,垂線段是指以直線外一點與垂足為兩端點的線段。
在連線直線外一點與直線上的所有點的連線中,垂線段最短,簡稱垂線段最短。在同一平面內,過一點有且只有一條直線與已知直線垂直。
垂線和鉛垂線當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,條直線的垂線其中的一條直線叫做另一條線的垂線。
注意到垂線的定義中,只是規定了兩直線交角的大小(90°),並沒有規定兩條直線的位置如何。也就是說,不論一條直線的位置如何,只要另一條與它的交角是90°,其中任何一條直線就是另一條直線的垂線。
當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。垂線段是一個圖形,點到直線的距離是一個數量。
從直線外一點到這條直線的垂線段的長度,稱之點到直線的距離,若兩條直線相交,且相交後的四個角90°,則這兩條直線互相垂直,即為互為垂線。
垂線的定義中,只是規定了兩直線交角的大小(90°),並沒有規定兩條直線的位置如何。也就是說,不論一條直線的位置如何,只要另一條與它的交角是90°,其中任何一條直線就是另一條直線的垂線。
垂線的基本性質是:
(1)過直線上或直線外的一點,有且只有一條直線和已知直線垂直。
(2)從直線外一點到這條直線上各點所連的線段中,垂直線段最短。
擴充套件資料:
從直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。顯然,垂線段是指以直線外一點與垂足為兩端點的線段。
在連線直線外一點與直線上的所有點的連線中,垂線段最短,簡稱垂線段最短。在同一平面內,過一點有且只有一條直線與已知直線垂直。
垂線和鉛垂線當兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直,條直線的垂線其中的一條直線叫做另一條線的垂線。
注意到垂線的定義中,只是規定了兩直線交角的大小(90°),並沒有規定兩條直線的位置如何。也就是說,不論一條直線的位置如何,只要另一條與它的交角是90°,其中任何一條直線就是另一條直線的垂線。