生物與人類生活的許多方面都有著非常密切的關係。生物學作為一門基礎科學,傳統上一直是農學和醫學的基礎,涉及種植業、畜牧業、漁業、醫療、製藥、衛生等等方面。隨著生物學理論與方法的不斷髮展,它的應用領域不斷擴大。生物學的影響已突破上述傳統的領域,而擴充套件到食品、化工、環境保護、能源和冶金工業等等方面。如果考慮到仿生學,它還影響到電子技術和資訊科技。 人口、食物、環境、能源問題是當前舉世矚目的全球性問題。世界人口每年的增長率約20%,大約每過35年,人口就會增加一倍。地球上的人口正以前所未有的速度激增著。人口問題是一個社會問題,也是一個生態學問題。人們必須對人類及環境的錯綜複雜的關係進行周密的定量的研究,才能對地球、對人類的命運有一個清醒的認識,從而學會自己控制自己,使人口數量維持在一個合理的數字上。在這方面生物學應該而且可能做出自己的貢獻。內分泌學和生殖生物學的成就導致口服避孕藥的發明,已促進了計劃生育在世界範圍內的推廣。在人口問題中,除了數量激增以外,遺傳病也嚴重威脅人口質量。一些資料表明,新生兒中各種遺傳病患者所佔的比例在 3%~10.5%之間。在中國的部分山區,智力不全者佔2%~3%,個別地區達10%以上。揭示產生遺傳病的原因,找到控制和征服遺傳病的途徑無疑是生物學又一重要任務。進行家系分析以確定患者是否患有遺傳病,對患者提出有益的遺傳指導和勸告;透過對胎兒的脫屑細胞進行染色體分析和各種酶的生化分析,以診斷未來的嬰兒是否有先天性遺傳性疾病。這些方法都能避免或減少患有遺傳病嬰兒的出生,以減輕家庭和社會的沉重負擔。將基因工程應用於遺傳病的治療稱為基因治療,在實驗動物上對幾種遺傳病的基因治療已取得一些進展。隨著基因工程技術的發展,基因治療將為控制和治療人類遺傳病開闢廣闊的前景。 和人口問題密切相關的是食物問題。食物匱乏是發展中國家長期以來未能解決的嚴重問題,當前世界上有幾億人口處於營養不良狀態。到21世紀初,糧食生產至少每年要增長3%~8%才能使食物短缺狀況有所改善。人類食物的最終來源是植物的光合作用,但在陸地上擴大農業生產的土地面積是有限的,增加食物產量的主要道路是改進植物本身。過去,在發展科學的農業和“綠色革命”方面,生物學已做出巨大的貢獻。今天,人類在一定限度內定向改造植物,用基因工程、細胞工程培育優質、高產、抗旱、抗寒、抗澇、抗鹽鹼、抗病蟲害的優良品種已經不是不切實際的遐想。植物基因工程一些關鍵技術已經有所突破,得到了一些轉基因植物。此外,利用富含蛋白質的藻類、細菌或真菌,進行大規模培養,並從中獲得單細胞蛋白質。由於成功地利用了基因工程並取得了大規模連續發酵工程的技術經驗,單細胞蛋白技術已經取得了重大突破。氨基酸是蛋白質的單體,植物蛋白往往缺少某幾種人體必需的氨基酸,如果在食品中新增某種氨基酸,將會大大提高植物蛋白的生物學價值。用微生物發酵、固定化細胞或固定化酶技產氨基酸,已經逐步形成比較完整的體系,可以預料,氨基酸生產將在營養不良問題上發揮日益重要的作用。現代生物學成就和食品工業相結合,已使食品工業成為新興的產業而蓬勃地發展起來。
生物與人類生活的許多方面都有著非常密切的關係。生物學作為一門基礎科學,傳統上一直是農學和醫學的基礎,涉及種植業、畜牧業、漁業、醫療、製藥、衛生等等方面。隨著生物學理論與方法的不斷髮展,它的應用領域不斷擴大。生物學的影響已突破上述傳統的領域,而擴充套件到食品、化工、環境保護、能源和冶金工業等等方面。如果考慮到仿生學,它還影響到電子技術和資訊科技。 人口、食物、環境、能源問題是當前舉世矚目的全球性問題。世界人口每年的增長率約20%,大約每過35年,人口就會增加一倍。地球上的人口正以前所未有的速度激增著。人口問題是一個社會問題,也是一個生態學問題。人們必須對人類及環境的錯綜複雜的關係進行周密的定量的研究,才能對地球、對人類的命運有一個清醒的認識,從而學會自己控制自己,使人口數量維持在一個合理的數字上。在這方面生物學應該而且可能做出自己的貢獻。內分泌學和生殖生物學的成就導致口服避孕藥的發明,已促進了計劃生育在世界範圍內的推廣。在人口問題中,除了數量激增以外,遺傳病也嚴重威脅人口質量。一些資料表明,新生兒中各種遺傳病患者所佔的比例在 3%~10.5%之間。在中國的部分山區,智力不全者佔2%~3%,個別地區達10%以上。揭示產生遺傳病的原因,找到控制和征服遺傳病的途徑無疑是生物學又一重要任務。進行家系分析以確定患者是否患有遺傳病,對患者提出有益的遺傳指導和勸告;透過對胎兒的脫屑細胞進行染色體分析和各種酶的生化分析,以診斷未來的嬰兒是否有先天性遺傳性疾病。這些方法都能避免或減少患有遺傳病嬰兒的出生,以減輕家庭和社會的沉重負擔。將基因工程應用於遺傳病的治療稱為基因治療,在實驗動物上對幾種遺傳病的基因治療已取得一些進展。隨著基因工程技術的發展,基因治療將為控制和治療人類遺傳病開闢廣闊的前景。 和人口問題密切相關的是食物問題。食物匱乏是發展中國家長期以來未能解決的嚴重問題,當前世界上有幾億人口處於營養不良狀態。到21世紀初,糧食生產至少每年要增長3%~8%才能使食物短缺狀況有所改善。人類食物的最終來源是植物的光合作用,但在陸地上擴大農業生產的土地面積是有限的,增加食物產量的主要道路是改進植物本身。過去,在發展科學的農業和“綠色革命”方面,生物學已做出巨大的貢獻。今天,人類在一定限度內定向改造植物,用基因工程、細胞工程培育優質、高產、抗旱、抗寒、抗澇、抗鹽鹼、抗病蟲害的優良品種已經不是不切實際的遐想。植物基因工程一些關鍵技術已經有所突破,得到了一些轉基因植物。此外,利用富含蛋白質的藻類、細菌或真菌,進行大規模培養,並從中獲得單細胞蛋白質。由於成功地利用了基因工程並取得了大規模連續發酵工程的技術經驗,單細胞蛋白技術已經取得了重大突破。氨基酸是蛋白質的單體,植物蛋白往往缺少某幾種人體必需的氨基酸,如果在食品中新增某種氨基酸,將會大大提高植物蛋白的生物學價值。用微生物發酵、固定化細胞或固定化酶技產氨基酸,已經逐步形成比較完整的體系,可以預料,氨基酸生產將在營養不良問題上發揮日益重要的作用。現代生物學成就和食品工業相結合,已使食品工業成為新興的產業而蓬勃地發展起來。