向量的叉乘運演算法則為|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a。
向量的叉乘運演算法則
1點乘和叉乘的區別
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b>
在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向與a,b所在的平面垂直,且方向要用“右手法則”判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a。
2物理學中的應用
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則向量a×向量b=| i j k ||a1 b1 c1||a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
向量的叉乘運演算法則為|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a。
向量的叉乘運演算法則
1點乘和叉乘的區別
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b>
在物理學中,已知力與位移求功,實際上就是求向量F與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向與a,b所在的平面垂直,且方向要用“右手法則”判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a。
2物理學中的應用
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則向量a×向量b=| i j k ||a1 b1 c1||a2 b2 c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。