一、按角分
1、銳角三角形:三角形的三個內角都小於90度。
2、直角三角形:三角形的三個內角中一個角等於90度,可記作Rt△。
3、鈍角三角形:三角形的三個內角中有一個角大於90度。
二、按邊分
1、不等邊三角形;不等邊三角形,數學定義,指的是三條邊都不相等的三角形叫不等邊三角形。
2、等腰三角形;等腰三角形(isosceles triangle),指兩邊相等的三角形,相等的兩個邊稱為這個三角形的腰。等腰三角形中,相等的兩條邊稱為這個三角形的腰,另一邊叫做底邊。
3、等邊三角形。等邊三角形(又稱正三角形),為三邊相等的三角形,其三個內角相等,均為60°,它是銳角三角形的一種。
性質
1 、在平面上三角形的內角和等於180°(內角和定理)。
2 、在平面上三角形的外角和等於360° (外角和定理)。
3、 在平面上三角形的外角等於與其不相鄰的兩個內角之和。
推論:三角形的一個外角大於任何一個和它不相鄰的內角。
4、 一個三角形的三個內角中最少有兩個銳角。
5、 在三角形中至少有一個角大於等於60度,也至少有一個角小於等於60度。
6 、三角形任意兩邊之和大於第三邊,任意兩邊之差小於第三邊。
7、 在一個直角三角形中,若一個角等於30度,則30度角所對的直角邊是斜邊的一半。
8、直角三角形的兩條直角邊的平方和等於斜邊的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三邊長a,b,c滿足a²+b²=c² ,那麼這個三角形是直角三角形。
9、直角三角形斜邊的中線等於斜邊的一半。
10、三角形的三條角平分線交於一點,三條高線的所在直線交於一點,三條中線交於一點。
11、三角形三條中線的長度的平方和等於它的三邊的長度平方和的3/4。
12、 等底同高的三角形面積相等。
13、 底相等的三角形的面積之比等於其高之比,高相等的三角形的面積之比等於其底之比。
14、三角形的任意一條中線將這個三角形分為兩個面積相等的三角形。
15、等腰三角形頂角的角平分線和底邊上的高、底邊上的中線在一條直線上(三線合一)。
邊角關係
三角函式給出了直角三角形中邊和角的關係,可以用來解三角形。
三角函式是數學中屬於初等函式中超越函式的一類。
一、按角分
1、銳角三角形:三角形的三個內角都小於90度。
2、直角三角形:三角形的三個內角中一個角等於90度,可記作Rt△。
3、鈍角三角形:三角形的三個內角中有一個角大於90度。
二、按邊分
1、不等邊三角形;不等邊三角形,數學定義,指的是三條邊都不相等的三角形叫不等邊三角形。
2、等腰三角形;等腰三角形(isosceles triangle),指兩邊相等的三角形,相等的兩個邊稱為這個三角形的腰。等腰三角形中,相等的兩條邊稱為這個三角形的腰,另一邊叫做底邊。
3、等邊三角形。等邊三角形(又稱正三角形),為三邊相等的三角形,其三個內角相等,均為60°,它是銳角三角形的一種。
擴充套件資料性質
1 、在平面上三角形的內角和等於180°(內角和定理)。
2 、在平面上三角形的外角和等於360° (外角和定理)。
3、 在平面上三角形的外角等於與其不相鄰的兩個內角之和。
推論:三角形的一個外角大於任何一個和它不相鄰的內角。
4、 一個三角形的三個內角中最少有兩個銳角。
5、 在三角形中至少有一個角大於等於60度,也至少有一個角小於等於60度。
6 、三角形任意兩邊之和大於第三邊,任意兩邊之差小於第三邊。
7、 在一個直角三角形中,若一個角等於30度,則30度角所對的直角邊是斜邊的一半。
8、直角三角形的兩條直角邊的平方和等於斜邊的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三邊長a,b,c滿足a²+b²=c² ,那麼這個三角形是直角三角形。
9、直角三角形斜邊的中線等於斜邊的一半。
10、三角形的三條角平分線交於一點,三條高線的所在直線交於一點,三條中線交於一點。
11、三角形三條中線的長度的平方和等於它的三邊的長度平方和的3/4。
12、 等底同高的三角形面積相等。
13、 底相等的三角形的面積之比等於其高之比,高相等的三角形的面積之比等於其底之比。
14、三角形的任意一條中線將這個三角形分為兩個面積相等的三角形。
15、等腰三角形頂角的角平分線和底邊上的高、底邊上的中線在一條直線上(三線合一)。
邊角關係
三角函式給出了直角三角形中邊和角的關係,可以用來解三角形。
三角函式是數學中屬於初等函式中超越函式的一類。