多項式的項數是指多項式中含單項式的個數。在數學中,由若干個單項式相加組成的代數式叫做多項式(若有減法:減一個數等於加上它的相反數)。多項式中的每個單項式叫做多項式的項,這些單項式中的最高項次數,就是這個多項式的次數。其中多項式中不含字母的項叫做常數項。有限的單項式之和稱為多項式。不同類的單項式之和表示的多項式,其中係數不為零的單項式的最高次數,稱為此多項式的次數。多項式的加法,是指多項式中同類項的係數相加,字母保持不變(即合併同類項)。多項式的乘法,是把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之後合併同類項。多項式的除法,可以用豎式來演算。若 f(x)和g(x)是F[x]中的兩個多項式,且g(x)不等於0,則在F[x]中有唯一的多項式 q(x)和r(x),滿足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次數小於g(x)的次數。此時q(x) 稱為g(x)除ƒ(x)的商式,r(x)稱為餘式。當g(x)=x-α時,則r(x)=ƒ(α)稱為餘元,式中的α是F的元素。此時帶餘除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),稱為餘元定理。g(x)是ƒ(x)的因式的充分必要條件是g(x)除ƒ(x)所得餘式等於零。如果g(x)是ƒ(x)的因式,那麼也稱g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特別地,x-α是ƒ(x)的因式的充分必要條件是ƒ(α)=0,這時稱α是ƒ(x)的一個根。
多項式的項數是指多項式中含單項式的個數。在數學中,由若干個單項式相加組成的代數式叫做多項式(若有減法:減一個數等於加上它的相反數)。多項式中的每個單項式叫做多項式的項,這些單項式中的最高項次數,就是這個多項式的次數。其中多項式中不含字母的項叫做常數項。有限的單項式之和稱為多項式。不同類的單項式之和表示的多項式,其中係數不為零的單項式的最高次數,稱為此多項式的次數。多項式的加法,是指多項式中同類項的係數相加,字母保持不變(即合併同類項)。多項式的乘法,是把一個多項式中的每個單項式與另一個多項式中的每個單項式相乘之後合併同類項。多項式的除法,可以用豎式來演算。若 f(x)和g(x)是F[x]中的兩個多項式,且g(x)不等於0,則在F[x]中有唯一的多項式 q(x)和r(x),滿足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次數小於g(x)的次數。此時q(x) 稱為g(x)除ƒ(x)的商式,r(x)稱為餘式。當g(x)=x-α時,則r(x)=ƒ(α)稱為餘元,式中的α是F的元素。此時帶餘除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),稱為餘元定理。g(x)是ƒ(x)的因式的充分必要條件是g(x)除ƒ(x)所得餘式等於零。如果g(x)是ƒ(x)的因式,那麼也稱g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特別地,x-α是ƒ(x)的因式的充分必要條件是ƒ(α)=0,這時稱α是ƒ(x)的一個根。