一、原理不同
1、加法原理
加法原理是分類計數原理,常用於排列組合中,具體是指:做一件事情,完成它有n類方式,第一類方式有M1種方法,第二類方式有M2種方法,……,第n類方式有Mn種方法,那麼完成這件事情共有M1+M2+……+Mn種方法。
2、乘法原理
做一件事,完成它需要分成n個步驟,做第一 步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那麼完成這件事共有 N=m1×m2×m3×…×mn 種不同的方法。 和加法原理是數學機率方面的基本原理。
二、口訣不同
1、加法原理:類類獨立
2、乘法原理:類類相關
三、應用不同
求取矩形的周長。
對於矩形的周長,長、寬雖然在二維空間的兩個維內,且兩個維相互正交,但是如果缺少長、寬中任何一個,周長仍然有意義(還是長度,只是不完整),則周長與長、寬的關係為:周長=長+寬+長+寬。
求取矩形的面積。
對於矩形,長、寬可以看作分別在二維空間的兩個維內,且兩個維相互正交,如果缺少長、寬中任何一個,矩形面積就失去意義,則矩形面積與長、寬的關係為:面積=長x寬。
一、原理不同
1、加法原理
加法原理是分類計數原理,常用於排列組合中,具體是指:做一件事情,完成它有n類方式,第一類方式有M1種方法,第二類方式有M2種方法,……,第n類方式有Mn種方法,那麼完成這件事情共有M1+M2+……+Mn種方法。
2、乘法原理
做一件事,完成它需要分成n個步驟,做第一 步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那麼完成這件事共有 N=m1×m2×m3×…×mn 種不同的方法。 和加法原理是數學機率方面的基本原理。
二、口訣不同
1、加法原理:類類獨立
2、乘法原理:類類相關
三、應用不同
1、加法原理
求取矩形的周長。
對於矩形的周長,長、寬雖然在二維空間的兩個維內,且兩個維相互正交,但是如果缺少長、寬中任何一個,周長仍然有意義(還是長度,只是不完整),則周長與長、寬的關係為:周長=長+寬+長+寬。
2、乘法原理
求取矩形的面積。
對於矩形,長、寬可以看作分別在二維空間的兩個維內,且兩個維相互正交,如果缺少長、寬中任何一個,矩形面積就失去意義,則矩形面積與長、寬的關係為:面積=長x寬。