求兩個或兩個以上力的合力,即求與多個分力作用效果相同的一個力的過程或方法叫做力的合成。
力的合成作為物理學學習中必不可少的方法之一,在力學裡發揮著至關重要的作用。在掌握力的合成的方法基礎上,可以透過數學計算及推導求出合力的大小及方向,從而在實際生活中對其進行更好的應用。
物理定義
力的合成(compositionofforces)用一個力等效地代替兩個或兩個以上作用在同一剛體上或同一質點上的力。這一個力稱為原力系的合力,而原力系中的任一力稱為這個合力的分力。對空間任意力系,不一定有合力;例如力偶就不能用一個力來代替。空間任意力系可以等效地簡化為一個力螺旋(其中包括力和力偶為零的情況)。匯交力系和同向平行力系一般都可求出合力。
匯交力系的合成
各力作用線交於一點的力系稱為匯交力系。根據力的可傳性,作用於剛體的匯交力系可換成各力作用於公共交點的共點力系。利用力的平行四邊形法則(見靜力學公理)將共點力系各力順序合成,就可求得共點力系的合力。合力矢是力多邊形的封閉邊。這種求共點力系的幾何方法稱為力多邊形法。在特殊情況下,若共點力系各力構成的折線的終點和起點重合,即封閉邊為零,則該力系的合力為零,這時力系就成為平衡力系。
平行力系的合成
各力作用線相互平行的一組力稱為平行力系。大小相等而方向相反,作用線不在同一直線上的一對力不能合成為—個力,它們稱為力偶。
任意力系的合成
具有合力的任意力系,其合力的大小和方向還可用合力投影定理(即合力在任一軸線上的投影等於各分力在此軸線上的投影之和)來計算。
同時受幾個力的作用,幾個力如果都作用在物體的同一點,或者它們的作用線相交於同一點,這幾個力叫做共點力。
求兩個或兩個以上力的合力的過程叫做力的合成。
對於非共點力,常見的做法是將各個力移到一個公共作用點上,同時產生相應的彎矩(大小為被移動的力乘以公共點到力作用線的距離),之後再將力和彎矩分別合成。
求兩個或兩個以上力的合力,即求與多個分力作用效果相同的一個力的過程或方法叫做力的合成。
力的合成作為物理學學習中必不可少的方法之一,在力學裡發揮著至關重要的作用。在掌握力的合成的方法基礎上,可以透過數學計算及推導求出合力的大小及方向,從而在實際生活中對其進行更好的應用。
物理定義
力的合成(compositionofforces)用一個力等效地代替兩個或兩個以上作用在同一剛體上或同一質點上的力。這一個力稱為原力系的合力,而原力系中的任一力稱為這個合力的分力。對空間任意力系,不一定有合力;例如力偶就不能用一個力來代替。空間任意力系可以等效地簡化為一個力螺旋(其中包括力和力偶為零的情況)。匯交力系和同向平行力系一般都可求出合力。
匯交力系的合成
各力作用線交於一點的力系稱為匯交力系。根據力的可傳性,作用於剛體的匯交力系可換成各力作用於公共交點的共點力系。利用力的平行四邊形法則(見靜力學公理)將共點力系各力順序合成,就可求得共點力系的合力。合力矢是力多邊形的封閉邊。這種求共點力系的幾何方法稱為力多邊形法。在特殊情況下,若共點力系各力構成的折線的終點和起點重合,即封閉邊為零,則該力系的合力為零,這時力系就成為平衡力系。
平行力系的合成
各力作用線相互平行的一組力稱為平行力系。大小相等而方向相反,作用線不在同一直線上的一對力不能合成為—個力,它們稱為力偶。
任意力系的合成
具有合力的任意力系,其合力的大小和方向還可用合力投影定理(即合力在任一軸線上的投影等於各分力在此軸線上的投影之和)來計算。
同時受幾個力的作用,幾個力如果都作用在物體的同一點,或者它們的作用線相交於同一點,這幾個力叫做共點力。
求兩個或兩個以上力的合力的過程叫做力的合成。
對於非共點力,常見的做法是將各個力移到一個公共作用點上,同時產生相應的彎矩(大小為被移動的力乘以公共點到力作用線的距離),之後再將力和彎矩分別合成。