因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。
例.用因式分解法解下列方程:
(1)(x+3)(x-6)=-8(2)2x2+3x=0
(3)6x2+5x-50=0(選學)(4)x2-2(+)x+4=0(選學)
(1)解:(x+3)(x-6)=-8化簡整理得
x2-3x-10=0(方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0(方程左邊分解因式)
∴x-5=0或x+2=0(轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0(用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0(轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0(十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=,x2=-是原方程的解。
(4)解:x2-2(+)x+4=0(∵4可分解為2·2,∴此題可用因式分解法)
(x-2)(x-2)=0
∴x1=2,x2=2是原方程的解。
因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。
例.用因式分解法解下列方程:
(1)(x+3)(x-6)=-8(2)2x2+3x=0
(3)6x2+5x-50=0(選學)(4)x2-2(+)x+4=0(選學)
(1)解:(x+3)(x-6)=-8化簡整理得
x2-3x-10=0(方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0(方程左邊分解因式)
∴x-5=0或x+2=0(轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0(用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0(轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0(十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=,x2=-是原方程的解。
(4)解:x2-2(+)x+4=0(∵4可分解為2·2,∴此題可用因式分解法)
(x-2)(x-2)=0
∴x1=2,x2=2是原方程的解。