比整數範圍更大的是有理數(整數和分數統稱有理數),比有理數範圍更大的是實數(有理數和無理數統稱實數)。 數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。 實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。 實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母 R 表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究物件。 擴充套件資料: 有理數的命名由來: “有理數”這一名稱不免叫人費解,有理數並不比別的數更“有道理”。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是“理性的”。 中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了“有理數”。但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這裡的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的“比”。與之相對,“無理數”就是不能精確表示為兩個整數之比的數,而並非沒有道理。
比整數範圍更大的是有理數(整數和分數統稱有理數),比有理數範圍更大的是實數(有理數和無理數統稱實數)。 數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。 實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。 實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母 R 表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究物件。 擴充套件資料: 有理數的命名由來: “有理數”這一名稱不免叫人費解,有理數並不比別的數更“有道理”。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是“理性的”。 中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了“有理數”。但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這裡的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的“比”。與之相對,“無理數”就是不能精確表示為兩個整數之比的數,而並非沒有道理。