描述
電極材料理論容量,即假定材料中鋰離子全部參與電化學反應所能夠提供的容量,其值透過下式計算:
故而,主流的材料理論容量計算公式如下:
同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩爾質量為96.461g/mol,其理論容量為278 mAh/g,LiCoO2摩爾質量97.8698 g/mol,如果鋰離子全部脫出,其理論克容量274 mAh/g.
對於矽負極,由5Si+22Li++22e- ↔ Li22Si5 可知, 5個矽的摩爾質量為140.430 g/mol,5個矽原子結合22個Li,則矽負極的理論容量為:
(2)電池設計容量
其中,面密度是一個關鍵的設計引數,主要在塗布和輥壓工序控制。壓實密度不變時,塗層面密度增加意味著極片厚度增加,電子傳輸距離增大,電子電阻增加,但是增加程度有限。厚極片中,鋰離子在電解液中的遷移阻抗增加是影響倍率特性的主要原因,考慮到孔隙率和孔隙的曲折連同,離子在孔隙內的遷移距離比極片厚度多出很多倍。
負極活性物質克容量×負極面密度×負極活性物含量比÷(正極活性物質克容量×正極面密度×正極活性物含量比)
在生產過程中,電池極片的塗層壓實密度計算公式:
其中,塗層的平均密度為:
首效=首次放電容量/首次充電容量
首效=(化成充入容量+分容補充電容量)/分容第一次放電容量
體積能量密度(Wh/L)=電池容量(mAh)×3.6(V)/(厚度(cm)*寬度(cm)*長度(cm))
fqj
描述
電極材料理論容量,即假定材料中鋰離子全部參與電化學反應所能夠提供的容量,其值透過下式計算:
故而,主流的材料理論容量計算公式如下:
同理可得:三元材料NCM(1:1:1)(LiNi1/3Co1/3Mn1/3O2 ) 摩爾質量為96.461g/mol,其理論容量為278 mAh/g,LiCoO2摩爾質量97.8698 g/mol,如果鋰離子全部脫出,其理論克容量274 mAh/g.
對於矽負極,由5Si+22Li++22e- ↔ Li22Si5 可知, 5個矽的摩爾質量為140.430 g/mol,5個矽原子結合22個Li,則矽負極的理論容量為:
(2)電池設計容量
其中,面密度是一個關鍵的設計引數,主要在塗布和輥壓工序控制。壓實密度不變時,塗層面密度增加意味著極片厚度增加,電子傳輸距離增大,電子電阻增加,但是增加程度有限。厚極片中,鋰離子在電解液中的遷移阻抗增加是影響倍率特性的主要原因,考慮到孔隙率和孔隙的曲折連同,離子在孔隙內的遷移距離比極片厚度多出很多倍。
負極活性物質克容量×負極面密度×負極活性物含量比÷(正極活性物質克容量×正極面密度×正極活性物含量比)
在生產過程中,電池極片的塗層壓實密度計算公式:
其中,塗層的平均密度為:
首效=首次放電容量/首次充電容量
首效=(化成充入容量+分容補充電容量)/分容第一次放電容量
體積能量密度(Wh/L)=電池容量(mAh)×3.6(V)/(厚度(cm)*寬度(cm)*長度(cm))
fqj