彈性模量可視為衡量材料產生彈性變形難易程度的指標,其值越大,使材料發生一定彈性變形的應力也越大,即材料剛度越大,亦即在一定應力作用下,發生彈性變形越小。彈性模量E是指材料在外力作用下產生單位彈性變形所需要的應力。它是反映材料抵抗彈性變形能力的指標,相當於普通彈簧中的剛度。說明:又稱楊氏模量。彈性材料的一種最重要、最具特徵的力學性質。是物體彈性t變形難易程度的表徵。用E表示。定義為理想材料有小形變時應力與相應的應變之比。E以單位面積上承受的力表示,單位為牛/米^2。模量的性質依賴於形變的性質。剪下形變時的模量稱為剪下模量,用G表示;壓縮形變時的模量稱為壓縮模量,用K表示。模量的倒數稱為柔量,用J表示。拉伸試驗中得到的屈服極限бb和強度極限бS,反映了材料對力的作用的承受能力,而延伸率δ或截面收縮率ψ,反映了材料縮性變形的能力,為了表示材料在彈性範圍內抵抗變形的難易程度,在實際工程結構中,材料彈性模量E的意義通常是以零件的剛度體現出來的,這是因為一旦零件按應力設計定型,在彈性變形範圍內的服役過程中,是以其所受負荷而產生的變形量來判斷其剛度的。一般按引起單為應變的負荷為該零件的剛度,例如,在拉壓構件中其剛度為:式中A0為零件的橫截面積。由上式可見,要想提高零件的剛度EA0,亦即要減少零件的彈性變形,可選用高彈性模量的材料和適當加大承載的橫截面積,剛度的重要性在於它決定了零件服役時穩定性,對細長杆件和薄壁構件尤為重要。因此,構件的理論分析和設計計算來說,彈性模量E是經常要用到的一個重要力學效能指標。在彈性範圍內大多數材料服從胡克定律,即變形與受力成正比。縱向應力與縱向應變的比例常數就是材料的彈性模量E,也叫楊氏模量。彈性模量在比例極限內,材料所受應力如拉伸,壓縮,彎曲,扭曲,剪下等)與材料產生的相應應變之比,用牛/米^2表示
彈性模量可視為衡量材料產生彈性變形難易程度的指標,其值越大,使材料發生一定彈性變形的應力也越大,即材料剛度越大,亦即在一定應力作用下,發生彈性變形越小。彈性模量E是指材料在外力作用下產生單位彈性變形所需要的應力。它是反映材料抵抗彈性變形能力的指標,相當於普通彈簧中的剛度。說明:又稱楊氏模量。彈性材料的一種最重要、最具特徵的力學性質。是物體彈性t變形難易程度的表徵。用E表示。定義為理想材料有小形變時應力與相應的應變之比。E以單位面積上承受的力表示,單位為牛/米^2。模量的性質依賴於形變的性質。剪下形變時的模量稱為剪下模量,用G表示;壓縮形變時的模量稱為壓縮模量,用K表示。模量的倒數稱為柔量,用J表示。拉伸試驗中得到的屈服極限бb和強度極限бS,反映了材料對力的作用的承受能力,而延伸率δ或截面收縮率ψ,反映了材料縮性變形的能力,為了表示材料在彈性範圍內抵抗變形的難易程度,在實際工程結構中,材料彈性模量E的意義通常是以零件的剛度體現出來的,這是因為一旦零件按應力設計定型,在彈性變形範圍內的服役過程中,是以其所受負荷而產生的變形量來判斷其剛度的。一般按引起單為應變的負荷為該零件的剛度,例如,在拉壓構件中其剛度為:式中A0為零件的橫截面積。由上式可見,要想提高零件的剛度EA0,亦即要減少零件的彈性變形,可選用高彈性模量的材料和適當加大承載的橫截面積,剛度的重要性在於它決定了零件服役時穩定性,對細長杆件和薄壁構件尤為重要。因此,構件的理論分析和設計計算來說,彈性模量E是經常要用到的一個重要力學效能指標。在彈性範圍內大多數材料服從胡克定律,即變形與受力成正比。縱向應力與縱向應變的比例常數就是材料的彈性模量E,也叫楊氏模量。彈性模量在比例極限內,材料所受應力如拉伸,壓縮,彎曲,扭曲,剪下等)與材料產生的相應應變之比,用牛/米^2表示