數學歸納法可以證
也可以如下做 比較有技巧性
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^2
=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由於n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前後消項]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
================================================
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
另外一個很好玩的做法
想像一個有圓圈構成的正三角形,
第一行1個圈,圈內的數字為1
第二行2個圈,圈內的數字都為2,
以此類推
第n行n個圈,圈內的數字都為n,
我們要求的平方和,就轉化為了求這個三角形所有圈內數字的和。設這個數為r
下面將這個三角形順時針旋轉60度,得到第二個三角形
再將第二個三角形順時針旋轉60度,得到第三個三角形
然後,將這三個三角形對應的圓圈內的數字相加,
我們神奇的發現所有圈內的數字都變成了2n+1
而總共有幾個圈呢,這是一個簡單的等差數列求和
1+2+……+n=n(n+1)/2
於是3r=[n(n+1)/2]*(2n+1)
r=n(n+1)(2n+1)/6
數學歸納法可以證
也可以如下做 比較有技巧性
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^2
=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由於n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3
所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前後消項]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
================================================
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
另外一個很好玩的做法
想像一個有圓圈構成的正三角形,
第一行1個圈,圈內的數字為1
第二行2個圈,圈內的數字都為2,
以此類推
第n行n個圈,圈內的數字都為n,
我們要求的平方和,就轉化為了求這個三角形所有圈內數字的和。設這個數為r
下面將這個三角形順時針旋轉60度,得到第二個三角形
再將第二個三角形順時針旋轉60度,得到第三個三角形
然後,將這三個三角形對應的圓圈內的數字相加,
我們神奇的發現所有圈內的數字都變成了2n+1
而總共有幾個圈呢,這是一個簡單的等差數列求和
1+2+……+n=n(n+1)/2
於是3r=[n(n+1)/2]*(2n+1)
r=n(n+1)(2n+1)/6