回覆列表
  • 1 # 雲追月

    從目前市場應用的角度看,人工智慧還只是在一些特殊的領域和特殊的地方應用而已,並沒有普及,也很難真正發揮其作用。從實驗室到普及全社會,人工智慧顯然還有一個相當長的路要走

  • 2 # 註冊不了手擀麵

    已經在用了。

    AI目前能落地的最好的領域就是影象處理領域了。現在機會人手一部的美顏手機就用了AI技術。開車違章抓拍監控攝像頭也用上了大量的AI技術。

    但是在其他領域,AI就很少有落地的了。因為人工智慧和智慧相比還有不小的距離。別看現在到處都是AI,但是AI技術在理論上已經幾十年沒有突破了。

  • 3 # 機器沒有芯

    目前媒體宣傳的AI其實是指AI中的深度學習技術。由於其本身是基於統計的方法,換句話說就是從資料中挖掘規律,導致很多致命問題如對抗樣本。這些問題限制其目前大多僅應用影象和自然語言處理領域。

    因此,不必過於當心AI會取代人們的工作,AI的發展還是一條漫長的路。。。

  • 4 # 極客架構

    AI已經進入人們生活了。

    首先,我們來看下AI包含那些應用。

    機器視覺:機器視覺,指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統,自動規劃,智慧搜尋,定理證明,博弈,自動程式設計,智慧控制,機器人學,語言和影象理解,遺傳程式設計等

    第三,AI包含的範圍非常廣泛,未來將是AI時代,也許未來會有人與機器人結婚,相伴一生呢。

    總結,我們生活在一個偉大時代,近100年的發展已經趕上過去幾千年的時間。努力拼搏,跟隨時代,引領時代。

  • 5 # 孤城烈酒

    感謝邀請!2019年ins上的一位模特紅了。粉色的蘑菇頭搭配著時尚的穿著,以日本街道為背景的照片都有著一種渾然天成的日系潮流感。但當你仔細讀過個人簡介才會驚呼,這位名為imma的模特並不是一位真實的人類,而是一名虛擬模特。智慧化作為未來的趨勢,誕生了imma這樣的AI虛擬模特,也讓我們看到了人工智慧已經離我們越來越近。

    如同電的誕生一樣,AI技術正在改變每個行業,智慧裝置、IOT、人工智慧、雲計算,越來越多新技術的興起使行業效率得到有效提升,加速了行業轉型發展。從16年開始,我們的生活颳起了一股人工智慧的風潮,一部分企業開始涉足人工智慧領域,短短數年,國內誕生了諸如曠視科技、商湯科技、極鏈科技Video++、依圖科技等優秀的初創AI企業。AI已經給谷歌、百度、微軟和Facebook等領先的科技公司中創造了巨大的價值。那麼AI離我們究竟還有多遠?

    什麼是人工智慧?其實從廣義上說,人工智慧的應用已經非常廣泛,各大新聞客戶端會根據你的閱讀興趣推送相關新聞、電商平臺也會根據你的購買習慣推送相關商品,這些都可以稱為人工智慧。從雲計算到大資料,人工智慧已經具備了相對堅實的基礎。其中,大資料稱得上是人工智慧賴以開展的生產資料,而云計算則是人工智慧發展的生產工具。不過,從當下人工智慧的發展現狀看,大部分的人工智慧還停留在大資料分析階段,距離真正的人工智慧還有一定的距離。

    人工智慧正在告別新一輪概念炒作,如果說60年前人工智慧概念的提出,多少有些科幻成分。那麼,今天人工智慧概念的再次出現卻帶有強烈的現實意義。從AlphaGo在圍棋領域戰勝人類選手後,人工智慧又開啟了新一輪的發展熱潮。與以往人工智慧憑藉強大的演算法戰勝人類不同,在圍棋領域,人工智慧展現出了機器學習的能力。我們一直夢想著有一個通用的模型,可以建模整個世界,使各種各樣的問題都能夠迎刃而解,這便是通用人工智慧的最終目標事實上我們現在所研究的人工智慧,都是針對某一特定問題的演算法或模型,比如影象的分類,目標的檢測,影片的理解等等。在特定的問題上,深度學習給我們帶來了驚人的表現,但是一旦離開特定的領域,演算法與模型的效能會大幅度下降。從我們的目標來看,通用人工智慧意味著如何來提高神經網路的泛化能力。所謂泛化能力,指機器學習演算法對於新的樣本的適應能力,即對於未知的資料也可以得到很好的結果。比如遷移學習中的一個例子:我們使用歐洲人的面部表情圖片來訓練一個模型,然後用來識別其他歐洲人的面部表情,識別結果通常可以不錯,但是用來識別亞洲人的表情,結果會一落千丈,遠遠達不到預期,即此時模型的泛化能力很差。

    人工智慧的下一個突破點:應用場景,無論是圍棋、象棋還是德州,人工智慧在這類棋牌遊戲中能否戰勝人類,已經基本沒有懸念。但如果人工智慧只能做到這些,這一新興技術的魅力也會大打折扣。如今,人們對這類人機大戰開始變得漠不關心,開始期望在幾乎所有的工作和生活場景中應用這一新技術,就如同當年計算機、網際網路出現之初一樣。彼時,計算機的應用讓人們進入無紙化的資訊時代,而網際網路的應用則讓人們得以打破資訊傳輸的邊界,真正讓世界變得更加互聯互通。

    從目前的態勢看,人工智慧所帶來的革命性將遠超計算機和網際網路,因為它要做的是要代替,或者說部分代替人類的思考。現在,我們發現人工智慧的應用還可以推廣到更多的場景中,比如金融、醫療、交通、文娛等眾多行業。人工智慧帶給人們的,不僅是透過資料分析呈現的規律和幫助人們進行決策,更多的是規避人類被情緒、感情等因素的干擾,幫助人們做出更加合理的決策。不過,相比較人工智慧技術的演進,當下人工智慧最重要的任務是如何普及到更多的應用場景中,並真正在這些場景中為人們所應用。人工智慧不斷獲取新的資料、進行持續且深度的學習,才是發展的關鍵。而從目前市場應用的角度看,人工智慧還只是在一些特殊的領域和特殊的地方應用而已,並沒有普及,也很難真正發揮其作用。從實驗室到普及全社會,人工智慧顯然還有一個相當長的路要走。

  • 中秋節和大豐收的關聯?
  • 怎麼去除狐臭呢?