(1)f(x)的定義域為x≠0
∵f(﹣x)=﹣x+1/(﹣x)=﹣(x+1/x)=﹣f(x)∴f(x)是奇函式
(2)f(x)在區間(0,1)上單調遞減;在區間(1,﹢∞)上的單調遞增
證明:
(1)設0<x1<x2<1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵0<x1<x2<1∴x1-x2<00<x1x2<1x1x2-1<0
∴(x1-x2)(x1x2-1)/(x1x2)>0∴f(x1)-f(x2)>0∴f(x1)>f(x2)
∴f(x)在區間(0,1)上單調遞減
(2)設x2>x1>1
∵x2>x1>1∴x1-x2<0x1x2>1x1x2-1>0
∴(x1-x2)(x1x2-1)/(x1x2)<0∴f(x1)-f(x2)<0∴f(x1)<f(x2)
∴f(x)在區間(1,﹢∞)上的單調遞增
(1)f(x)的定義域為x≠0
∵f(﹣x)=﹣x+1/(﹣x)=﹣(x+1/x)=﹣f(x)∴f(x)是奇函式
(2)f(x)在區間(0,1)上單調遞減;在區間(1,﹢∞)上的單調遞增
證明:
(1)設0<x1<x2<1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵0<x1<x2<1∴x1-x2<00<x1x2<1x1x2-1<0
∴(x1-x2)(x1x2-1)/(x1x2)>0∴f(x1)-f(x2)>0∴f(x1)>f(x2)
∴f(x)在區間(0,1)上單調遞減
(2)設x2>x1>1
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/(x1x2)
∵x2>x1>1∴x1-x2<0x1x2>1x1x2-1>0
∴(x1-x2)(x1x2-1)/(x1x2)<0∴f(x1)-f(x2)<0∴f(x1)<f(x2)
∴f(x)在區間(1,﹢∞)上的單調遞增