認清各個統計量的作用與特點,選用不同的統計量,說簡單點:
一組資料中如果有特別大的數或特別小的數時,一般用中位數,
一組資料比較多(20個以上),範圍比較集中,一般用眾數,
其餘情況一般還是平均數比較精確,
一、聯絡與區別:
1、平均數是透過計算得到的,因此它會因每一個數據的變化而變化。
2、中位數是透過排序得到的,它不受最大、最小兩個極端數值的影響.中位數在一定程度上綜合了平均數和中位數的優點,具有比較好的代表性。部分資料的變動對中位數沒有影響,當一組資料中的個別資料變動較大時,常用它來描述這組資料的集中趨勢。另外,因中位數在一組資料的數值排序中處中間的位置,
二、平均數、中位數和眾數它們都有各自的的優缺點.
平均數:(1)需要全組所有資料來計算;
(2)易受資料中極端數值的影響.
中位數:(1)僅需把資料按順序排列後即可確定;
(2)不易受資料中極端數值的影響.
眾數:(1)透過計數得到;
(2)不易受資料中極端數值的影響
關於“中位數、眾數、平均數”這三個知識點的理解:
⒈眾數。
一組資料中出現次數最多的那個資料,叫做這組資料的眾數。
⒉眾數的特點。
①眾數在一組資料中出現的次數最多;②眾數反映了一組資料的集中趨勢,當眾數出現的次數越多,它就越能代表這組資料的整體狀況,並且它能比較直觀地瞭解到一組資料的大致情況。但是,當一組資料大小不同,差異又很大時,就很難判斷眾數的準確值了。此外,當一組資料的那個眾數出現的次數不具明顯優勢時,用它來反映一組資料的典型水平是不大可靠的。
3.眾數與平均數的區別。
眾數表示一組資料中出現次數最多的那個資料;平均數是一組資料中表示平均每份的數量。
4.中位數的概念。
一組資料按大小順序排列,位於最中間的一個數據(當有偶數個數據時,為最中間兩個資料的平均數)叫做這組資料的中位數。
5.平均數、眾數和中位數三種統計資料在生活中的意義。
平均數說明的是整體的平均水平;眾數說明的是生活中的多數情況;中位數說明的是生活中的中等水平。
認清各個統計量的作用與特點,選用不同的統計量,說簡單點:
一組資料中如果有特別大的數或特別小的數時,一般用中位數,
一組資料比較多(20個以上),範圍比較集中,一般用眾數,
其餘情況一般還是平均數比較精確,
一、聯絡與區別:
1、平均數是透過計算得到的,因此它會因每一個數據的變化而變化。
2、中位數是透過排序得到的,它不受最大、最小兩個極端數值的影響.中位數在一定程度上綜合了平均數和中位數的優點,具有比較好的代表性。部分資料的變動對中位數沒有影響,當一組資料中的個別資料變動較大時,常用它來描述這組資料的集中趨勢。另外,因中位數在一組資料的數值排序中處中間的位置,
二、平均數、中位數和眾數它們都有各自的的優缺點.
平均數:(1)需要全組所有資料來計算;
(2)易受資料中極端數值的影響.
中位數:(1)僅需把資料按順序排列後即可確定;
(2)不易受資料中極端數值的影響.
眾數:(1)透過計數得到;
(2)不易受資料中極端數值的影響
關於“中位數、眾數、平均數”這三個知識點的理解:
⒈眾數。
一組資料中出現次數最多的那個資料,叫做這組資料的眾數。
⒉眾數的特點。
①眾數在一組資料中出現的次數最多;②眾數反映了一組資料的集中趨勢,當眾數出現的次數越多,它就越能代表這組資料的整體狀況,並且它能比較直觀地瞭解到一組資料的大致情況。但是,當一組資料大小不同,差異又很大時,就很難判斷眾數的準確值了。此外,當一組資料的那個眾數出現的次數不具明顯優勢時,用它來反映一組資料的典型水平是不大可靠的。
3.眾數與平均數的區別。
眾數表示一組資料中出現次數最多的那個資料;平均數是一組資料中表示平均每份的數量。
4.中位數的概念。
一組資料按大小順序排列,位於最中間的一個數據(當有偶數個數據時,為最中間兩個資料的平均數)叫做這組資料的中位數。
5.平均數、眾數和中位數三種統計資料在生活中的意義。
平均數說明的是整體的平均水平;眾數說明的是生活中的多數情況;中位數說明的是生活中的中等水平。