三角函式
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(這四個可根據sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)
sin18°=(√5-1)/4 (這個值在高中競賽和自招中會比較有用,即黃金分割的一半)
正弦定理:在△ABC中,a / sinA = b / sin B = c / sin C = 2R (其中,R為△ABC的外接圓的半徑。)
三角函式的誘導公式(六公式)
公式一:
sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*2π)=tanα
公式二:
sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα
公式三:
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
公式四:
sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα
公式五:
sin(π/2-α) = cosα cos(π/2-α) =sinα
由於π/2+α=π-(π/2-α),由公式四和公式五可得
公式六:
sin(π/2+α)= cosα cos(π/2+α) = -sinα sin(π/2+α)= cosα
cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα
sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα
cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα
誘導公式記背訣竅:奇變偶不變,符號看象限。
和(差)角公式
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
積化和差的四個公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
三角形面積公式:
【1】三角形的面積=1/2底×高
【2】直角三角形的面積=兩直角邊乘積的一半
【3】等腰直角三角形的面積=(斜邊一半)²
【4】等邊三角形的面積=√3/4(邊長)²
【5】已知三角形的三邊a、b、c,且設s=1/2(a+b+c),則
三角形的面積=根號下[s(s-a)(s-b)(s-c)
]
(此稱為海倫公式)
三角函式
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(這四個可根據sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)
sin18°=(√5-1)/4 (這個值在高中競賽和自招中會比較有用,即黃金分割的一半)
正弦定理:在△ABC中,a / sinA = b / sin B = c / sin C = 2R (其中,R為△ABC的外接圓的半徑。)
三角函式的誘導公式(六公式)
公式一:
sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*2π)=tanα
公式二:
sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα
公式三:
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα
公式四:
sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα
公式五:
sin(π/2-α) = cosα cos(π/2-α) =sinα
由於π/2+α=π-(π/2-α),由公式四和公式五可得
公式六:
sin(π/2+α)= cosα cos(π/2+α) = -sinα sin(π/2+α)= cosα
cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα
sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα
cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα
誘導公式記背訣竅:奇變偶不變,符號看象限。
和(差)角公式
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
積化和差的四個公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
三角形面積公式:
【1】三角形的面積=1/2底×高
【2】直角三角形的面積=兩直角邊乘積的一半
【3】等腰直角三角形的面積=(斜邊一半)²
【4】等邊三角形的面積=√3/4(邊長)²
【5】已知三角形的三邊a、b、c,且設s=1/2(a+b+c),則
三角形的面積=根號下[s(s-a)(s-b)(s-c)
]
(此稱為海倫公式)